Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Большой интерес к вариационным формулировкам задач деформирования многослойных оболочечных конструкций объясняется в первую очередь тем, что на основе исходных гипотез, применяя формальные математические приемы, можно избежать трудоемкого этапа составления уравнений равновесия статическим методом и приближенно свести трехмерную задачу теории упругости к одномерной или двумерной задаче. При этом соответствующие разрешающие уравнения и граничные условия строго соответствуют исходным допущениям и определяются единственным образом. Кроме того, вариационные формулировки являются основой для эффективных приближенных методов расчета, которые позволяют получить на выбранном классе аппроксимирующих функций наилучшие в энергетическом смысле приближенные решения.

ПОИСК



Вариационно-матричный подход к расчету конструкПринцип возможных перемещений

из "Расчет многослойных пластин и оболочек из композиционных материалов "

Большой интерес к вариационным формулировкам задач деформирования многослойных оболочечных конструкций объясняется в первую очередь тем, что на основе исходных гипотез, применяя формальные математические приемы, можно избежать трудоемкого этапа составления уравнений равновесия статическим методом и приближенно свести трехмерную задачу теории упругости к одномерной или двумерной задаче. При этом соответствующие разрешающие уравнения и граничные условия строго соответствуют исходным допущениям и определяются единственным образом. Кроме того, вариационные формулировки являются основой для эффективных приближенных методов расчета, которые позволяют получить на выбранном классе аппроксимирующих функций наилучшие в энергетическом смысле приближенные решения. [c.71]
3 с единых позиций принципа возможных перемещений рассмотрены формулировки задач статики, устойчивости и динамики. Полученные уравнения в вариациях для упругих консервативных систем являются голономными и представляют условия стационарности соответствующих функционалов, записанных в перемещениях. Вид самих функционалов в большинстве случаев не приводится, поскольку для дальнейшего решения необходимы лишь вариационные формулировки. В общем случае показано, как с использованием этих формулировок удается получить разрешающие дифференциальные уравнения или приближенные решения. [c.71]
Для одномерных задач показаны этапы вывода вариационноматричным способом канонических систем дифференциальных уравнений, а также получения с помощью фундаментальных решений матриц жесткости одномерных элементов. Изложены основные положения метода конечных элементов, включая аппроксимацию решений, составление для элемента приведенных матриц жесткости,масс, начальных напряжений. Кратко рассмотрены методы решения задач динамики и нелинейной статики. [c.71]
Используемая в главе векторно-матричная символика позволяет проследить общие этапы решения широкого круга задач, компактно записать уравнения и значительно облегчить процесс составления программ расчета на ЭВМ. Текст и описание вспомогательных программ расчета приводятся в приложении 2. [c.72]
С другими вариационными формулировками можно ознакомиться в работах [40, 46]. [c.72]
Рассмотрим механическую систему, состоящую из произвольного деформируемого тела и приложенных к нему распределенных объемных и поверхностных сил = gi, g , gs) и р) = р , p.j., р . Тело закреплено в пространстве с помощью некоторых связей, исключающих его перемещения как жесткого целого (рис. 3.1). Будем считать, что рассматриваемая система находится в состоянии равновесия. Действительные перемещения, соответствующие переходу точек тела из начального ненагруженного состояния в равновесное обозначим и = щ, щ), действительные напряжения — матри-цей-столбцом сг = ст , сгз, х з, tig, Т12 , компонентами которого являются нормальные и касательные напряжения в декартовой системе координат. Деформированное состояние тела, вызванное действительными перемещениями, опишем матрицей-столбцом е = = б1, 63, бд, Y23. Vi3. Т12 . компонентами которого являются относительные удлинения и углы сдвига в декартовой системе координат. Деформации в теле будем считать достаточно малыми, а объем и поверхность тела в деформированном состоянии будем отождествлять с его объемом и поверхностью в начальном недеформированном состоянии. [c.72]
В соответствии с принципом возможных перемещений запишем бЛ — 6i = 0. [c.73]
Принцип возможных перемещений является наиболее общим принципом механики. Он справедлив при любых реологических свойствах тела, т. е. при любых зависимостях между деформациями и напряжениями в материале тела его можно использовать и в случае неконсервативных внешних сил. Основные соотношения этого параграфа получены при линейных кинематиче ских связях деформаций с перемещениями, задаваемых матрицей (3.5), но сам принцип возможных перемещений остается в силе и для более общего вида таких связей, в частности, при нелинейных кинематических зависимостях (в этом случае нелинейные слагаемые появятся в уравнениях равновесия и граничных условиях). [c.75]
Принцип возможных перемещений носит стати ко-геометрический характер, и матрица дифференциальных операторов [L ] в уравнениях равновесия (3.9) полностью определяется исходными кинематическими связями, задаваемыми соотношениями типа (3.4). Поэтому использование принципа возможных перемещений оказывается весьма удобным при построении методов расчета многослойных конструкций, когда в качестве исходных берутся достаточно сложные кинематические соотношения по толщине пакета. [c.75]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте