ПОИСК Статьи Чертежи Таблицы Малоцнкловая прочность элементов газотурбинных двигателей из "Прочность конструкций при малоцикловом нагружении " Важным этапом является определение цикла работы детали или всей машины, поскольку часто этот цикл является достаточно сложным и не всегда стабильным. Так, длительность полета изменяется для различных районов эксплуатации различны и условия по температуре окруя ающего воздуха. Пример статистически обоснованного цикла работы пассажирского авиационного газотурбинного двигателя с длительностью работы на стационарном режиме 1,5 ч показан на рис. 4.1 [1]. Как видно, в течение каждого полета самолета детали двигателя подвергаются действию по крайней мере трех циклов нагружения, соответствующих выходу на взлетный режим (из них 2 — в течение предполетной подготовки), а также действию нескольких циклов меньшей интенсивности, связанных с заходом на посадку, включением реверса, выпуском шасси. Следовательно, циклическая долговечность деталей должна быть определена в условиях одновременного накопления статического (стационарный полет) и циклического (запуск и другие режимы) повреждения, для чего до.лжны быть установлены закономерности взаимодействия этих двух видов повреждения. [c.75] Кроме этого, циклическое нагружение нестационарно — величины циклических нагрузок различны в пределах каждого блока, соответствующего одному полету. Особенностью нагружения деталей ГТД является то, что интенсивное малоцикловое и статическое нагружение происходит с одновременным действием вибрационных напряжений, вызывающих механическую усталость материала деталей. В тех случаях, когда нагружение или разгрузка деталей (рабочие лопатки турбин, диски, корпуса) сопровождается увеличением или уменьшением температуры, механическое циклическое нагружение дополняется термическим, и при этом сопротивление малоцикловой усталости должно быть определено с учетом фактора переменности температуры в течение цикла. Для ряда деталей (сопловые лопатки, форсунки, экраны камер сгорания, элементы форсажных камер) термические напряжения являются основными и необходима оценка сопротивления термической усталости. [c.75] Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов. [c.77] Как видно, существует тенденция повышения прочностных характеристик одновременно со снижением деформационных свойств. Особенно значительное уменьшение пластических свойств наблюдается для литых сплавов. Известно вместе с тем [10,11], что сопротивление малоцикловому разрушению во многом определяется ресурсом пластичности материала. [c.77] Специальным требованием, предъявляемым к деталям авиационных двигателей, является высокая надежность и достаточно большой (10 000—20 000 ч) ресурс. Поскольку нри этом одновременно должны быть выполнены определенные требования к весу деталей, расчеты и экспериментальные методы проверки их на прочность, в том числе на малоцикловую усталость, должны проводиться с особой тщательностью. [c.78] Повреждаемость, накапливаемая в деталях авиационного двигателя от действия низкочастотного нагружения и нагрева (малоцикловое нагружение), зависит от условий работы деталей. В дисках турбин малоцикловое нагружение от повторных запусков, изменений режима, включения реверса проявляется в сочетании статических (от центробежных сил) и термических нагрузок. Как показано в работе [4], в момент запуска двигателя условия работы материала в ободе, на ступице и в полотне диска различны. В ободной части температурные напряжения и напряжения от центробежных сил имеют разный знак, однако при выключении двигателя и продувке холодного воздуха возможен обратный температурный градиент [2], и в этом случае механические и термические напряжения в ободной части суммируются. Максимальные значения нагрузки и температуры при этом не совпадают, т. е. происходит неизотермическое нагружение. В ступице и в полотне диска температурные напряжения суммируются с центробежными и их максимум совпадает в цикле нагружения с моментом достижения максимальной температуры. В остальной части цикла диск работает на стационарном режиме вибрационные напряжения в нем обычно невелики. [c.78] Повреждение рабочих лопаток турбины создается повторным действием центробежных сил при наборе и сбросе оборотов и циклическими термическими нагрузками, действующими синхронно с ним. Нагружению лопаток свойствен неизотермический характер с изменением знака напряжений и величины температур в экстремальных точках цикла. Сжатие материала кромок, происходящее при высоких температурах, вызывает повреждения, свойственные высокотемпературному деформированию,— деформацию границ зерен, коагуляцию упрочняющих фаз, выход к границам зерен дислокаций и формирование микротрещин на границах зерен и в углах на стыке трех зерен. Последующее охлаждение и связанные с ним растягивающие напряжения приводят к повреждению тела зерен, вызванному деформацией сдвига по плоскостям скольжения и холодным наклепом материала. При этом в случае жесткого нагружения внешние условия нагружения (размах деформаций) остаются неизменными, но в пределах каждого полуцикла происходит необратимый процесс накопления статического и циклического повреждения. [c.79] В рабочих лопатках турбин действие термоциклических нагрузок приводит к разрушению кромок, так, как это показано на рис. 4. 3, а. Характер разрушения может быть хрупким, как в данном случае, но может наблюдаться и значительная остаточная деформация, внешне проявляющаяся в виде волнистости кромок. [c.79] Кроме указанных видов повреждений, в материале рабочих лопаток турбин возникают усталостные повреждения от механических вибраций. Первоначальные трещины от термического нагружения часто не являются опасными при отсутствии вибраций, поскольку обычно уменьшают степень жесткости нагружения материала, а следовательно, и величину возникающих термонапряжений. При действии вибрационных нагрузок эти трещины являются источником концентрации напряжений и быстро развиваются в усталостные. В этом чаще всего проявляется отрицательная роль совместного действия циклических нагрузок низкой и высокой частоты. [c.79] Лопаткам соплового аппарата турбины (примеры разрушений которых приведены на рис. 4.3, б, а, г) обычно не свойственны вибрационные нагрузки, и наиболее часто в них проявляются малоцикловые термоусталостиые разрушения. На рис. 4.3, б показана охлаждаемая лопатка соплового аппарата первой ступени турбины транспортного авиационного двигателя. Трещина термической усталости возникла на входной кромке в перемычке между отверстиями для выхода охлаждающего воздуха и развилась далее на несколько отверстий (их диаметр 0,4—0,6 мм). [c.79] В качестве восстановительного метода поврежденных деталей, кроме выборки мелких трещин и сварки (с последующим отжигом), может использоваться пайка высокотемпературными припоями, работающими до температуры 900—950° С. [c.81] Оценка сопротивления малоцикловому разрушению является для деталей авиационных двигателей важным этапом расчетов на прочность, дополняя сугцествуюгцие традиционные методы расчета [2—4, 13, 14]. Рабочие лопатки турбин рассчитываются на кратковременную и длительную статическую прочность оценивается вытяжка пера — для обеспечения зазоров между рабочим колесом и корпусом и для обеспечения натяга между бандажными полками. Материал лопаток, кроме обеспечения прочности, должен иметь достаточную жаростойкость и сопротивление эрозии. Для определения величины натяга в полках производится расчет на релаксацию напряжений и ползучесть в процессе длительной работы на стационарных режимах. [c.82] Для расчета напряженного состояния необходимы данные о скорости вращ ения, газовых нагрузках и температурном состоянии по длине и сечениям лопатки. Учитываются дополнительные изгибающие моменты, возникающие вследствие выносов оси лопатки. Эффектом кручения, возникающего от действия центробежных и газовых сил, обычно пренебрегают. [c.82] Оценка сопротивления усталости рабочих лопаток турбин производится на основе экспериментальных данных о величинах возникающих в них переменных напряжений и пределов выносливости лопаток при лабораторных испытаниях [13]. [c.83] Лопатки сопловых аппаратов рассчитываются на действие изгибающих нагрузок от газовых сил как двухопорные балки (лопатки первой ступени) и как консольные или шарнирно-соединенные балки (второй и следующих ступеней) при косом изгибе. Для сопловых лопаток расчет на циклическое нагружение, вызванное действием термических усилий, имеет особое значение ввиду возможных забросов температур газа. Неравномерность температуры газа в окружном направлении, как показано в работе [2], может достигать 25—30%, это приводит к превышению рабочих значений температур на лопатках соплового аппарата на 50—150° С. Поэтому наиболее частым дефектом этих детален является их растрескивание от действия циклических термических напряжений (см. 1). [c.83] Корпусные детали рассчитываются на прочность и устойчивость. В расчетах на статическую прочность учет влияния сварных швов, вварных элементов не вызывает трудностей, однако для расчетов на малоцикловую усталость необходимо экспериментальное определение коэффициентов концентрации в сложных элементах корпуса. [c.84] Напряженно-деформированное состояние в основных деталях авиационных двигателей (лопатках и дисках турбин) характеризуется высоким уровнем переменных напряжений, вызванных изменением режимов работы [2, 4 и др.]. [c.84] МОЙ рабочей лопатки турбины. Значение среднего (по сечению) напряжения составляет 100 МПа, максимальные напряжения в зоне охлаждающего отверстия достигают 600 МПа. Большие значения растягивающих напряжений в зоне отверстия объясняются суммарным действием центробежных нагрузок и относительно невысоким значением температуры лопатки в этой зоне (600 С). Влияние охлаждения распространяется на контур профиля—эпюры напряжений по контуру повторяют кривую распределения их по срединной линии, хотя максимум эпюр менее выражен. Кромки лопатки сжаты, величины напряжений здесь достигают 300 МПа, что в сочетании с температурой 930° С (на задней кромке) приводит к пластическому деформированию материала в этих зонах (лопатка изготовлена из сплава ХН70ВМТЮ с величиной предела пропорциональности при 850° сТпц = 280 МПа). [c.85] Приведенные примеры указывают на существенное различие в циклах нагружения и нагрева в различных зонах лопатки, и поэтому расчет долговечности необходимо производить для многих точек каждого сечения, выбирая для дальнейшего анализа точки с наименьшей расчетной долговечностью. Величина средних напряжений, как это видно из рис. 4.6, не приводит к возникновению опасных состояний в наиболее напряженных точках сечения. [c.86] Пример напряженного и деформированного состояния в диске турбины показан на рис. 4.7 [4, 14]. Как упоминалось выше, температурные напряжения на ободе в период запуска и стационарной работы сжимающие суммарные окружные напряжения в этой зоне поэтому оказываются незначительными. Основную нагрузку на обод создают усилия от рабочих лопаток. Как показывает эпюра рис. 4.7, я, наиболее напряженные зоны в диске — у отверстия в ступице и в полотне, где сказывается влияние концентрации напряжений. На рис. 4.7, б показано распределение пластических деформаций по радиусу как видно, наибольшие деформации развиваются на контуре отверстия в ступице. Зоны перехода в полотне также имеют повышенную деформацию. Кинетика напряженного состояния в течение первых семи циклов, установленная авторами [4, 14], показана на рис. 4.7, в. Как видно из этого рисунка, размах деформаций и их величина в экстремальных точках цикла, а также коэффициент асимметрии цикла деформирования существенно изменяются уже в первых циклах деформирования. Очевидно, что для расчета циклической долговечности следует использовать размах деформаций в стабилизированном цикле, если стабилизация вообще происходит. В ином случае необходимо использовать представления о закономерностях суммирования повреждений от нестационарных нагрузок, например, так, как это будет показано ниже на примере расчета диска малоразмерного газотурбинного двигателя. [c.86] Вернуться к основной статье