ПОИСК Статьи Чертежи Таблицы Сварные соединения разнородных сталей из "Сварные конструкции паровых и газовых турбин " Использование в наиболее горячих узлах паросиловых и газотурбинных установок с рабочими температурами 580° и выше хромистых и аустенитных жаропрочных сталей, а также требование сведения объема применения хромоникелевых сталей к минимуму неизбежно вызывают необходимость сочленения деталей из этих сталей с деталями из перлитных сталей. Наиболее технологичным и конструктивным вариантом такого сочленения может являться сварное соединение. [c.43] Перспективность применения сварных соединений из сталей разных классов, условно иногда называемых композитными , определяется также и тем, что в большинстве деталей турбин распределение рабочих температур является неравномерным, причем, как правило, до температур, требующих использования аустенитных сталей, нагрета лишь относительно небольшая часть детали, непосредственно соприкасающаяся с рабочей средой. В настоящее время, в связи с широким использованием охлаждения основных элементов турбин, неравномерность распределения температур, а следовательно, и возможность применения сварных конструкций из разнородных сталей еще более возрастают. Необходимо также учитывать, что жаропрочные аусте-нитные стали обладают пониженной длительной пластичностью при температурах 500—600 (в завцсимости от марки стали), а при более низких температурах менее прочны, чем наиболее распространенные перлитные теплоустойчивые стали. Поэтому применение сварных конструкций из разнородных сталей приводит к более рациональному распределению материала в изделии и в ряде случаев — к повышению работоспособности последнего. [c.44] В отечественной и зарубежной практике известны многочисленные примеры осуществления данных сварных соединений из сталей различных классов в виде сварных стыков паропроводных и пароперегревательных труб, диафрагм, композитных дисков с аустенитным ободом и перлитным центром, узлов сочленения цилиндров из перлитной стали с сопловыми коробками и паровпуском из хромистой или аустенитной стали и ряда других. Подобные сварные соединения, работающие при высоких температурах, успешно эксплуатируются в течение десятилетий также в нефтяной промышленности. [c.44] В табл. 7 приведены возможные сочетания сталей, нашедшие использование или намеченные к применению в сварных узлах паровых и газовых турбин. Наиболее распространенными являются сварные соединения перлитных сталей с 12-процентными хромистыми и перлитных или хромистых с аустенитными. Основные сведения по сварным соединениям разнородных сталей одного класса приведены в пп. 2, 3 и 4. [c.44] Осуществление подобных сварных разнородных соединений требует решения ряда дополнительных проблем, связанных с выбором сварочных материалов, оценкой напряженного состояния конструкции и изучением зон сплавления разнородных материалов. Условия эксплуатации сварных узлов энергетических установок требуют также детального изучения поведения разнородных сварных конструкций при циклических изменениях рабочих температур. [c.45] При выборе сварочных материалов в данном случае не может быть использовано обычное требование близости химического состава наплавленного металла основному в сварных соединениях разнородных сталей металл шва будет всегда отличен хотя бы от одной стали. По своей прочности металл шва должен удовлетворять требованиям, предъявляемым к менее прочной составляющей сварного соединения. Металл шва должен сохранять также высокую технологическую прочность и уровень свойств в условиях перемешивания при сварке с отличающимся по составу основным металлом. [c.45] Предварительный выбор сварочных материалов может быть сделан из рассмотрения структурной диаграммы для сварных швов (фиг. 17) [41 ]. Структурное состояние наплавленного металла или свариваемой стали можно определить по этой диаграмме, вычислив эквивалентные содержания хрома и никеля. Структурное состояние промежуточных составов шва можно установить, откладывая на прямой, соединяющей точки наплавленного металла и свариваемой стали, отрезки, соответствующие проценту перемешивания. Как правило, для обычных режимов ручной дуговой сварки нужно учитывать перемешивание наплавленного металла с основным в пределах 20— 40%. Для автоматической сварки степень перемешивания увеличивается до 40—60%. [c.45] Для сварных соединений перлитных сталей с хромистыми использование как перлитных, так и хромистых электродов неизбежно приводит к появлению в слоях шва, прилегающих к отличному по составу основному металлу, в исходном состоянии после сварки мартенситной структуры. Как показало исследование механических свойств переходных составов шва [42 ], наилучшие показатели достигаются для швов с содержанием хрома в пределах 1—5% (возможные составы при использовании перлитных электродов). Поэтому для сварки перлитных сталей с хромистыми используются в основном электроды перлитного класса. [c.45] Для сварки аустенитных сталей первой группы (п. 4) с перлитными могут, из условия получения шва без трещин, рекомендоваться аустенитно-ферритные электроды марок КТИ-5 (точка С на диаграмме), ЭА-2 и другие, применение которых при степени перемешивания наплавленного металла с перлитной сталью до 25- 35% не приводит к появлению в шве мартенсита. При сварке корневых слоев желательно выбирать электроды указанных марок с повышенным содержанием ферритной фазы (до 20 30%). [c.46] Для сварки аустенитных сталей второй группы с перлитными сталями аустенитно-ферритные электроды применены быть не могут, так как в данном случае, как и в однородных соединениях аустенитных сталей (п. 4), в участках шва, примыкающих к аустенитной составляющей, будет получена однофазная аустенитная структура и в них могут образовываться кристаллизационные трещины. Поэтому для указанных сварных соединений следует применять электроды, обеспечивающие однофазную аустенитную структуру, стойкую против трещин. В настоящее время наибольшее распространение имеют электроды с повышенным содержанием молибдена на базе проволоки типа Х15Н25М6 (марок ЦТ-10, НИАТ-5). Структурное состояние наплавленного металла типа XI5Н25М6 определяется точкой D на диаграмме. Эти же электроды желательно использовать и в сварных соединениях аустенитных сталей первой группы с перлитными сталями. [c.46] Как будет показано ниже, для сварных соединений аустенитной стали с перлитной или хромистой, при температуре эксплуатации выше 400—450°,. [c.46] Другой особенностью сварных соединений разнородных сталей является возможность образования в зоне сплавления разнородных материалов переходных прослоек, вызванных диффузией углерода. Этот процесс реактивной диффузии, изученной достаточно подробно [43], [44], обусловлен разностью термодинамических активностей контактирующихся материалов, главным образом из-за разного содержания в них энергичных карбидообразующих элементов и прежде всего хрома, ванадия, ниобия и других. [c.47] Имеются отдельные указания [45], что наличие переходных прослоек в зоне сплавления, вызванных диффузией углерода, может приводить к преждевременным хрупким разрушениям сварных соединений, работающих под воздействием коррозионной среды. Поэтому для подобных соединений требование выбора в качестве менее легированной составляющей стали, содержащей энергичные карбидообразующие элементы, сохраняется и для изделий, работающих при комнатной температуре. [c.48] Особенностью сварных соединений разнородных сталей является наличие в них остаточных напряжений вследствие разных характеристик термического расширения свариваемых материалов [46]. Наибольшей величины указанные напряжения получают в сварных соединениях аустенитной стали с перлитной и особенно с хромистой, поскольку коэффициент линейного расширения аустенитной стали на 20—40% больше, чем перлитной и хромистой. В сварных соединениях хромистой стали с перлитной величины остаточных напряжений заметно меньше и могут практически не учитываться, так как коэффициенты линейного расширения свариваемых материалов в данном случае отличаются между собой лишь на 10%. [c.48] Нагрев изделия в процессе отпуска до 650—750° в зависимости от марки стали приводит к снятию сварочных напряжений за счет прохождения процесса релаксации. Однако в процессе охлаждения после отпуска в разнородных соединениях, в отличие от однородных, вновь возникают остаточные напряжения, но уже вызванные не неравномерностью нагрева при сварке, а разностью коэффициентов линейного расширения контактируемых материалов. Так, при охлаждении аустенитная составляющая стремится получить большее укорочение, чем перлитная, за счет того, что коэффициенты линейного расширения аустенита на 20—40% больше, чем перлита. Наличие в сварном соединении жесткой связи между ними препятствует свободной деформации отдельных составляющих и вызывает появление в сварных соединениях L новых остаточных напряжений. Вслед- в,кГ1мм г ствие этого в аустенитных ободе и шве возникают напряжения растял ения, а в перлитном центре — напряжения сжатия, причем в зоне сплавления наблюдается скачок величины напряжений с переменой их знака. [c.49] Как показывают данные расчета, приведенные в п. 3 главы П1, величина остаточных напряжений в разнородных сварных конструкциях в первую очередь зависит от разности коэффициентов линейного расширения аустенитной и перлитной сталей, типа конструкции и ее рабочей температуры. При этом отдельные конструктивные изменения, папр., наличие отверстия в центре диска, изменение его ширины и т. п. относительно мало сказываются на величине напряжений. В случае использования аустенитной стали с низким пределом текучести и высокими значениями коэффициента линейного расширения (например, стали 1Х18Н9Т) напряжения еще до полного охлаждения изделия при отпуске могут достигать предела текучести. Повторный нагрев изделия приводит к снижению величины напряжений, а последующее охлаждение восстанавливает первоначальную эпюру. [c.49] Наибольшую опасность при циклических нагревах представляет появление вторичных пластических деформаций, могущих привести к преждевременному разрушению конструкции вследствие термической усталости. Наиболее вероятно возникновение очагов разрушения в зоне сплавления перлитной или хромистой стали с аустенитным швом, в которой возможно появление пластических деформаций и напряжения в которой меняют свой знак. Поэтому принятие мер для устранения переходных прослоек, ослабляющих зону сплавления, является непременным условием повышения работоспособности сварных соединений. [c.49] В связи с тем, что термическая обработка сварных соединений разнородных сталей не приводит к снятию остаточных напряжений, а лишь вызывает их перераспределение, она может рекомендоваться только для улучшения механических свойств различных зон сварного соединения. Поэтому, например, для сварных соединений углеродистой стали с аустенитной, в которых не следует ожидать появления хрупких закаленных околошовных зон в результате сварки, термическую обработку следует исключить. [c.49] Вернуться к основной статье