ПОИСК Статьи Чертежи Таблицы Экспериментальные стенды для исследования потоков влажного пара из "Двухфазные течения в элементах теплоэнергетического оборудования " Основные требования к экспериментальным стендам диктуются задачам исследования, необходимостью обеспечить начальные и граничные условия. В основу выбора конструкции стенда, его теплофизических, газодинамических и геометрических параметров должны быть положены методы теории подобия и моделирования. Условия моделирования далеко не всегда могут быть реализованы с необходимой полнотой, так как число определяющих критериев подобия для двухфазных сред велико. Установленное выше (гл. 1) минимальное число, определяющих критериев подобия в различных задачах учитывалось при разработке экспериментальных стендов. [c.22] В лаборатории турбомашин МЭИ используются различные стенды влажнога водяного пара, ориентированные на изучение 1) условий подобия и моделирования двухфазных течений в различных каналах и в элементах проточной части турбин АЭС 2) механизмов скачковой и вихревой конденсации пара в соплах каналах и решетках турбин при дозвуковых и сверхзвуковых скоростях 3) влияния периодической нестационарности и турбулентности на процессы образования дискретной фазы, взаимодействия фаз и интегральные характеристики потоков 4) двухфазного пограничного слоя и пленок в безградиентных и градиентных течениях 5) механизма и скорости распространения возмущений в двухфазной среде, а также критических режимов в различных каналах в стационарных и нестационарных потоках 6) основных свойств и характеристик дозвуковых и сверхзвуковых течений в соплах, диффузорах, трубах, отверстиях и щелях 7) влияния тепло- и массообмена на характеристики потоков в различных каналах 8) течений влажного пара в решетках турбин с подробным изучением структуры потока и газодинамических характеристик 9) структуре потока, потерь энергии и эрозионного процесса в турбинных ступенях, работающих на влажном паре 10) рабочего процесса двухфазных струйных аппаратов (эжекторов i и инжекторов). [c.22] Объединенная тепловая схема лаборатории представлена на рис, 2.1. Перегретый водяной пар из отборов турбин ТЭЦ МЭИ или непосредственно от котлов ТЭЦ поступает в первую ступень увлажнения пара (участок трубопровода с вмонтированными в нем центробежными форсунками). За первой ступенью увлажнения редуцированный и охлажденный паровой поток. раздваивается. Меньшая часть его направляется на питание форсунок третьих ступеней увлажнения, большая же часть поступает во вторую ступень увлажнения, где с помощью центробежных форсунок производится тонкая регулировка температуры пара(. Первые две ступени увлажнения являются общими для всех стендов и позволяют вне зависимости от расхода пара регулировать его температуру от То=То макс до To = Ti(p(s). [c.23] Рассмотрим некоторые экспериментальные стенды, включенные в схему лаборатории МЭИ. Рабочая часть установки для исследования характеристик сопл, на влажном паре методом взвешивания реактивной силы (рис. 2.2) была выполнена с однокомпонентными газодинамическими весами и присоединялась к увлажнителям стенда I (рис. 2.1). Установка предназначалась для проведения физических исследований осесимметричных двухфазных течений и определения коэффициентов тяги, расхода и потерь кинетической энергии. Равноплечий рычаг 2 жесткой конструкции подвешен с помощью упругого шарнира (ленточного креста) в сварном корпусе. На рычага на одинаковом расстоянии от точки опоры размещены два идентичных стакана, связанных с увлажнителем стенда двумя гибкими сильфонами большого внутреннего диаметра. В стаканы устанавливают исследуемые объекты. Кинематическая схема весов позволяет, во-первых, полностью освободить силоизмеритель от измерения побочного усилия, создаваемого перепадом статических давлений на стаканах и, во-вторых, получать характеристики сопл при одном заглушенном стакане и сравнительные характеристики, сли сопла установлены в обоих стаканах. Рычаги 1 и 8 предназначены для присоединения к ним силоизмерителей и индикаторов перемещения рычага 2. Измерение реактивной силы осуществляется компенсационным (нулевым) методом. Рассматриваемая рабочая часть оснащена весами высокого класса точности и другими приборами для пневмометрических и оптических исследований потока. [c.23] Универсальная влажнопаровая труба (стенд /П на рис. 2,1) позволяет проводить исследования турбинных решеток в поле оптического прибора. Для этой цели служит рабочая часть, схематически показанная на рис. 2.5. Решетка профилей, скрепленных по торцам тонкими пластинами, имеющая прозрачные каналы, укрепляется в поворотных кольцах, в которых установлены оптические стекла. Конструкция допускает исследования решеток различного типа в широком диапазоне углов входа потока изменение угла входа существляется поворотом решетки и соответствующим перемещением направляющих, подвижно соединенных с концевыми лопатками. Предусмотрена специальная организация потока на входе и за решеткой, обеспечивающая возможность изучения решеток в неравномерном поле скоростей при разной дисперсности жидкой фазы и рассогласовании скоростей фаз. Все рабочие части стенда /// имеют систему измерений, включающую определение параметров потока на входе и выходе дисперсности, скольжения капель и степени влажности, полного и статического давлений, направления потока, температуры торможения, а также распределения давления по обводам каналов, пульсаций полного и статического давлений. [c.29] Стенды XII и XIII (рис. 2.1) предназначены для измерения критических параметров и скорости звука в двухфазных средах (временным методом и методом акустического интерферометра). В схему лаборатории включена радиальная экспериментальная турбина XIV, смонтированная в поле оптического прибора. Сегмент соплового аппарата и часть каналов рабочей решетки выполнены прозрачными с целью изучения процесса движения влажного пара оптическими методами в реальных условиях взаимодействия решеток. В схему газодинамической лаборатории МЭИ на рис. 2,1 и в описание не включены сгекды, работаю- щие на воздухе. [c.32] Вернуться к основной статье