Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
При построении разрешающих уравнений ползучести и устойчивости гибких оболочек используются соотношения технической теории [12, 15, 17, 59, 61], которая достаточно хорошо обоснована и широко применяется в практике расчетов упругих и упругопластических оболочек, а также пологих оболочек нулевой гауссовой кривизны, оболочек, в которых напряженно-деформированное состояние характеризуется функциями, быстро изменяющимися по координатам срединной поверхности.

ПОИСК



Уравнения технической теории ползучести и устойчивости гибких оболочек

из "Ползучесть и устойчивость гибких пологих оболочек вращения "

При построении разрешающих уравнений ползучести и устойчивости гибких оболочек используются соотношения технической теории [12, 15, 17, 59, 61], которая достаточно хорошо обоснована и широко применяется в практике расчетов упругих и упругопластических оболочек, а также пологих оболочек нулевой гауссовой кривизны, оболочек, в которых напряженно-деформированное состояние характеризуется функциями, быстро изменяющимися по координатам срединной поверхности. [c.16]
Техническая теория гибких упругопластических оболочек развита в работах [24, 26] техническая теория ползучести тонких оболочек при малых прогибах с использованием деформационной теории и гипотезы старения — в работах [8, 9]. Дифференциальные уравнения ползучести гибких пологих оболочек с физическими соотношениями, линеаризованными относительно основного безмоментного состояния, приведены в работе [18]. [c.16]
Развиваемая ниже теория справедлива для оболочек переменной толщины с произвольной формой срединной поверхности, выполненных из анизотропного неоднородного материала с учетом термоползучести. [c.16]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте