ПОИСК Статьи Чертежи Таблицы Осредненные уравнения энергии, притока тепла и энергии пульсационного движения фаз из "Основы механики гетерогенных сред " Эти равенства обобщают (1.1.17) за счет учета поверхностной энергии и кинетической энергии пульсационного движения. [c.84] Введем величины с и д , определяющие осредненный обмен. энергией в t-й фазе вдоль внешних границ dSi выделенного элементарного объема dVi. [c.84] Таким образом, изменение средней внутренней энергии г-й фазы вдоль траектории ее центра масс происходит за счет ряда процессов. Первое слагаемое piAi определяет указанное изменение за счет работы внутренних сил второе и третье — за счет притоков тепла, причем второе слагаемое — за счет внешнего (по отношению к выделенному объему смеси) притока тепла, описываемого вектором ql, а третье — за счет притока тепла Qji через межфаз-ную поверхность четвертое и пятое слагаемые — за счет притока массы (а вместе с ней и внутренней энергии), причем четвертое слагаемое — за счет притока массы из-за пульсационного движения, описываемого вектором, а пятое — из-за фазовых переходов на межфазной поверхности. [c.86] Таким образом, методом осреднения мы получили уравнения импульса, притока тепла фаз, а также уравнения момента импульса и энергии их пульсационного (мелкомасштабного) движения. В отличие от феноменологического подхода гл. 1, метод осреднения позволил последовательно учесть влияние мелкомасштабного движения фаз поверхностного натяжения и получить выражения для определения таких макроскопических характеристик, как тензор напряжений в фазах, интенсивности межфазного взаимодействия, потоки различных видов энергий и т. д. через значения микропараметров. Реализация этих выражений, приводящая к реологическим соотношениям теперь уже только между макропараметрами (которые можно называть явными реологическими соотношениями) и, как результат, к замыканию системы уравнений, должна производиться с учетом структуры и физических свойств фаз в смеси. И это есть основная проблема при моделировании гетерогенных сред. [c.87] В следующей главе (гл. 3) полученные осредненные уравнения и определения макропараиетров через микропараметры конкретизированы для болев частного случая двухфазной смеси —смеси с монодисперсной структурой со сферическими частицами. Но даже для такой частной структуры явные реологические соотношения без дополнительных экспериментальных коэффициентов и функций, позволяющие замкнуть систему уравнений, получить в общем случае не удается. В гл. 3 этот подход доведен до конца для двух предельных случаев монодисперсной смеси когда несущая фаза — идеальная (с нулевой вязкостью) жидкость или очень вязкая жидкость. [c.87] Вернуться к основной статье