Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Искровой канал в твердом теле выступает как преобразователь электрической энергии во внутреннюю энергию продуктов канала, переходящую далее в работу по его расширению, в энергию поля механических напряжений и деформаций, в энергию вновь образованной поверхности диэлектрика. Исследование этих процессов имеет большое значение для разработки ЭИ, так как с результатами этих исследований связана возможность решения задачи разработки метода расчета конечных показателей разрушения и обоснования оптимальных режимов реализации процесса.

ПОИСК



Физика канала разряда и напряженное состояние твердых тел при электроимпульсном разрушении

из "Электроимпульсная дезинтеграция материалов "

Искровой канал в твердом теле выступает как преобразователь электрической энергии во внутреннюю энергию продуктов канала, переходящую далее в работу по его расширению, в энергию поля механических напряжений и деформаций, в энергию вновь образованной поверхности диэлектрика. Исследование этих процессов имеет большое значение для разработки ЭИ, так как с результатами этих исследований связана возможность решения задачи разработки метода расчета конечных показателей разрушения и обоснования оптимальных режимов реализации процесса. [c.42]
Для исследований выбраны щелочно-галлоидные кристаллы (ЩГК) Na l, КС1, КВг, SiF, легко поддающиеся обработке, прозрачные в оптическом диапазоне спектра. Для них известны уравнения состояния низкие значения предела текучести позволяют создать вокруг канала поле напряжений, при котором шаровая составляющая тензора напряжений много больше девиаторной, и исключить на определенном временном интервале (кроме SiF) нарушение сплошности среды в ближней зоне от канала пробоя под действием напряжений сдвига. Применяемые монокристаллы выращивались из химически чистых солей с последующим отжигом. В исследованиях использовалось также органическое стекло (ПММА) - материал с аморфным строением, легко обрабатываемый, прозрачный, с надежным уравнением состояния, широко используемый в исследованиях взрыва различной природы. Достаточно высокое значение предела текучести (Г 2-10 Па) позволило моделировать напряженное состояние, близкое к наблюдаемому в реальных объектах ЭИ-технологии. [c.43]
Расширение канала разряда. На фотограмме в режиме самосвечения фис.1.17) канал в ЩГК имеет неоднородную яркость. В центральной части по мере расширения канала выделяется ядро с яркостью, существенно большей, чем на периффии границы канала несколько размыты. На фотограмме с подсвечиванием наблюдается достаточно резкая смена плотности почернения при переходе от канала к диэлектрику, что указывает на существование высокого градиента плотности вещества на границе раздела канал-твердый диэлектрик. Искровой канал как цилиндрическое образование на щелевых фото-развертках можно наблюдать в течение (2-5)10- с до затемнения фотограммы зоной нарушения сплошности. [c.43]
Излучение канала разряда. Спектроскопические методы исследования искрового канала дают наибольшую информацию о термодинамических процессах, протекающих в фазе его расширения. Для измерений спектральной плотности излучения из зоны канала использовалась фотоэлектрическая запись сигнала. Источником сравнения в измерениях служил эталонный источник сплошного спектра с яркостной температурой Т 39000К. [c.44]
Температура канала разряда. Непрерывный спектр излучения искрового канала пробоя в конденсированных диэлектриках в совокупности с непрозрачностью канала в видимом диапазоне длин волн ограничивают экспериментальные возможности определения температуры. Практически эксперимент позволяет определить либо яркостную, либо цветовую эффективную температуру канала как неравномерно нагретого тела. Наиболее корректным для измерений яркостной температуры представляется метод сравнения с определением температуры по (1.14) для к, равного коэффициенту поглощения оптического слоя исследуемого источника к = для АЧТ). [c.46]
Непрерывное поступление вещества со стенки канала ведет к охлаждению плазмы периферийных слоев и несмотря на малые радиальные размеры канала пробоя дает основание для предположения о неравномерном распределении температуры по радиусу. Для оценки распределения температуры по сечению искрового канала выполнено измерение распределения спектральной плотности излучения и показателя поглощения по сечению. В предположении, что температура убывает к периферии, тогда как плотность, наоборот, от центра симметрии к стенке канала растет в первом приближении, принято, что = onst. [c.49]
Распределение температуры по сечению канала в кристалле КС1 при разбиении его на 5 зон для случая Я = 440 нм, Гк = 0.063 см приведено на рис. 1.19а. [c.49]
В общем случае определение термофизических свойств такой плазмы является задачей многих тел (причем без малого параметра разложения), аналитическое решение которой пока не получено. Существующие к настоящему времени приемы и методы расчета состава и термодинамических функций плотной низкотемпературной неидеальной плазмы (Г=1) по погрешностям оценки параметров плазмы существенно уступают соответствующим методам расчета идеального газа. Наиболее слабым звеном в этих методах является отсутствие теоретических предпосылок для оценки погрешностей расчета. Эксперименты на ударных трубах, с пробоем диэлектриков и другие в силу значительных погрешностей не могут к настоящему времени однозначно базироваться на той или иной методике расчета. В такой ситуации следует стремиться к наиболее простым формам уравнения состояния плазмы, а оценку коэффициентов, входящих в него, с погрешностью 3-4% считать удовлетворительной. При этом следует иметь в виду, что традиционная химическая модель (модель смеси) даже для плазмы с Г s 7 может дать удовлетворительные результаты по большинству параметров плазмы при обоснованном учете связанных, состояний и кулоновского взаимодействия. Достаточно надежные результаты могут быть получены также для некоторых параметров с использованием методов разложения термодинамических величин в канонические ансамбли, дать приемлемые результаты для не слишком широкого диапазона давлений в канале. [c.51]
Выполнены /12/ расчеты состава и основных термодинамических параметров плазмы КО в двух существенно отличающихся энергетических режимах. Расчет состава плазмы произведен путем последовательного приближения. На первом этапе - в дебаевском приближении путем разложения в большой канонический ансамбль на уровне разрешения С/+, е и коррелированные ион-электронные пары, включая атомы К, С1. На втором этапе - с учетом полученных значений вспомогательных параметров (плазменного параметра и поправок к потенциалам ионизации и к давлению) в рамках химической модели с разрешением до КС1, К, К2, h. [c.51]
Анализ аналогичных данных по составу плазмы для наиболее распространенных химических соединений в земной коре показал, что основной вклад в формирование значений при тех или иных температуре и давлении в рассматриваемом диапазоне условий вносит удельная энергия атомизации (D/m) химического соединения, образующего диэлектрик. Наиболее вероятным значением уэ для минералов при их импульсном электрическом пробое в режиме технологического электровзрыва следует считать у, = 1.12-1.16 для соединений, не содержащих металлы / группы либо содержащих их в малом количестве, и уэ = 1.6-1.22 - для минералов с высоким содержанием металлов I группы Периодической таблицы (например, Nu20, Ма2 10з К2О и т.д.). Для режимов энерговклада, характеризующихся высоким значением интенсивности ввода энергии N lo Вт/с, следует использовать верхние значения указанных диапазонов. В этом случае высокие давления в канале пробоя (по крайней мере в стадии роста мощности) сопровождаются малой степенью ионизации вещества в канале. И, наоборот, при N ю Вт/с целесообразно применять значения уэ на нижнем уровне указанного диапазона. [c.52]
Забираемая из сети энергия fV напряжения промышленной частоты, превращается в энергию емкостного накопителя fVo повышенного выпрямленного напряжения. Процессы заряда емкостных накопителей, в том числе для специфичных условий ЭИ, достаточно хорошо изучены и в оптимальном режиме реализуются с к.п.д до 90-95% /18/. [c.53]
Аналитическое решение всего комплекса вопросов, имеющего конечной целью определение параметров разрушения и оптимизацию параметров энергетического блока, практически невозможно. Более продуктивен метод, комбинирующий аналитическое рассмотрение с использованием полученных экспериментальным путем эмпирических и полуэмпирических аппроксимаций закономерностей и параметров с общей оценкой погрешности и достоверности полученных результатов. [c.54]
Технологическим ЭИ-процессам свойственен глубоко осциллирующий режим разряда емкостного накопителя в разрядном контуре, содержащем искровой канал в твердом диэлектрике как единственную полезную нагрузку. В такой ситуации разрядный ток ограничивается в основном внутренним импедансом генератора, а электрическое активное сопротивление R(t) искрового канала является базовой величиной для отыскания других электрических характеристик канала энергосодержания, внутренней энергии и в конечном итоге с учетом механизма динамического нагружения среды и разрушения - для построения расчетных схем всего процесса ЭИ-технологии. [c.54]
28) Ai = ariL- - -Uo- , где I - длина межэлектродного промежутка, Uo- напряжение на емкостном накопителе, С - его емкость, L - индуктивность разрядной цепи. В этом случае также отмечается высокая корреляция (коэффициент корреляции 0.85) ai с акустической жесткостью породы и коэффициентом крепости пород по шкале Протодьяконова. [c.55]
Предложенные аппроксимации Rk достаточны для решения практических задач обоснования оптимальных параметров генерирующей аппаратуры. Они позволяют вести расчет переходных процессов в электрическом контуре генератора импульсов и обосновывать оптимальные параметры генератора по любому заданному критерию оптимизации (значениям мощности и энергии в определенные моменты времени). Применение (1.28) для расчетов переходного процесса сопряжено с трудностью априорного выбора Ai, однако простой вид функции R(t) допускает аналитические вычисления. Для синтеза схемы генератора импульсов по требуемым оптимальным параметрам энерговыделения в канале разряда можно воспользоваться диаграммой энергетических режимов искрового канала, представленной на рис. 1.20/И/. [c.55]
Динамическое нагружение среды искровым разрядом. Исследование характера возмущений в среде, вызванных электрическим разрядом, скорости их распространения и параметров является важным этапом на пути к решению задачи о разрушающем действии разряда. Визуализация возмущения с помощью теневой съемки и метода фотоупругости при скоростной съемке процесса во многом позволяет дать ответ на поставленные выше вопросы. [c.55]
На рисунке 1.17 представлены фотограммы и стилизованная картина распространения возмущения в образцах КС1. На рисунках 1.21, 1.22 представлены фотограммы скоростной фотор1егистрации распространения возмущений от канала разряда при пробое органического стекла (ПММА) в режиме щелевой развертки и режиме лупы времени теневым способом и в поляризованном свете. [c.55]
При интенсивном энерговыделении на начальном этапе, в первую осцилляцию разрядного тока в диэлектрике (в частности, в образцах ПММА), формируется и распространяется сверхзвуковая ударная волна уплотнения, которая, однако, быстро (на расстоянии 1-2 мм) вырождается в акустическую, расщепляясь на упругий предвестник и пластическую волну. [c.56]
При пробое ЩГК практически с момента замыкания межэлектродного промежутка каналом сквозной проводимости от канала отшнуровывается двухволновое возмущение упругий предвестник (первая линия) и фронт ударной пластической волны (вторая линия). Первая линия имеет постоянный угол наклона, соответствующий скорости звука в данном кристалле по заданному кристаллографическому направлению. Малая плотность почернения указывает на слабое изменение плотности вещества при переходе через границу этой линии. Вторая линия, достаточно плотная и четкая у канала, постепенно размывается по мере удаления на периферию. Большая плотность почернения возмущения свидетельствует о высоком градиенте показателя преломления и, следовательно, о высоком градиенте плотности вещества в этом возмущении. Возмущение имеет переменную скорость, но всегда меньше скорости звука по данному кристаллографическому направлению. Для слабоинтенсивных режимов энерговклада фронт ударной пластической волны вырождается в контактный разрыв уже в ближней зоне, и упругий предвестник выражен очень слабо. [c.57]
Двухвояновая структура возмущения соответствует упругопластическому поведению ЩГК, наблюдаемому в этих кристаллах в диапазоне до десятков килобар. Такая структура, содержащая упругий предвестник и ударную пластическую волну, характерна для поздних стадий взрыва ВБ в твердых телах, когда сверхзвуковая ударная волна, отделившись от стенки камеры, по мере развития теряет скорость и через некоторое время разделяется на упругую и пластическую. [c.57]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте