ПОИСК Статьи Чертежи Таблицы Закономерности электрического пробоя горных пород из "Электроимпульсная дезинтеграция материалов " Практическая возможность использования способа в конкретных технологических целях в значительной степени определяется электрическими и энергетическими параметрами процесса, такими, как уровень рабочего напряжения U, производительность единичного разряда V, энергоемкость разрушения W. Приоритетности этих показателей подчинены изучение физических основ, оптимизационные исследования техники и технологии способа. Уровень рабочего напряжения определяет техническую и эксплуатационную надежность техники. При слишком высоком уровне рабочего напряжения снижается надежность работы изоляционных элементов, стабильность работы генерирующей аппаратуры, повышаются габариты оборудования. Производительность и энергоемкость разрушения определяют экономическую эффективность технологии. [c.25] Феноменология пробоя. Сведение исследований физического принципа ЭИ к определению и сопоставлению в.с.х. пробоя различных сред на косоугольных импульсах не раскрывает сущность происходящих физических процессов и ограничивает практические возможности оптимизации процесса в различных технологических применениях способа. Для этого требовалось проведение исследований непосредственно процесса пробоя в реальных условиях реализации способа при вариации вида горной породы и жидкой среды, типа электродов, величины межэлектродного промежутка, формы импульса напряжения, его амплитуды и полярности. Использование в опытах соответствующих материалов (пластичного фторопласта и прозрачного органического стекла) и методик, в том числе метода отсечки напряжения, позволяет оптически фиксировать каналы неполного пробоя в материале, выявлять динамику их прорастания. Исследования непосредственно на образцах горных пород дали возможность выявить эффекты влияния структуры и текстуры породы. [c.26] На рисунке 1.10 представлены стилизованные схемы прорастания канала пробоя для некоторых сочетаний расположения электродов и полярности импульса по результатам регистрации разрядных процессов на образцах органического стекла /12/. В наиболее общем случае процессы в промежутке можно описать следующим образом. Разрядный процесс в промежутке начинается с развития многочисленных кистевых разрядов по поверхности твердого тела с обоих электродов. По мере продвижения кистевых разрядов с их головок инициируются многочисленные каналы неполного пробоя в твердом теле, прорастающие с электродов навстречу друг другу. Финальная стадия процесса представляет собой смыкание каналов разряда в твердом теле, которое опережает по времени возможное при других условиях смыкание кистевых разрядов по поверхности. Отметим, что каналы неполного пробоя твердого тела формируются не непосредственно у точек соприкосновения электродов с материалом, а на некотором удалении от них. В приэлектродном пространстве существует как бы запрещенная зона сложной конфигурации, в пределах которой исключена возможность возникновения канала сквозного пробоя. Радиус этой зоны измеряется несколькими (2-4) миллиметрами. Точки внедрения канала сквозного пробоя менее всего располагаются по линии соединения электродов по кратчайшему расстоянию, зачастую расстояние между точками внедрения I больше межэлектродного расстояния I. Для гетерогенных пород отмечается избирательная приуроченность каналов пробоя к определенным минералам. [c.26] Характер разрядных процессов существенно зависит от полярности импульса и расположения электродов относительно поверхности твердого тела. Практическую значимость в этих исследованиях имеют данные о технологической эффективности пробоя, показателем которой служит величина потенциального объема разрушения, определяемая протяженностью и глубиной внедрения разряда в твердое тело. [c.27] Можно предположить какие факторы способствуют достижению максимального технологического эффекта - это условия для опережающего хода функции E(t) в твердом теле у потенциального электрода и торможения разрядного процесса у другого электрода. Решающее значение имеет выравнивание электрического поля в разрядном промежутке за счет внедрения объемного заряда и выноса на электроды потенциала земли при их заземлении. Чем раньше и эффективнее происходит внедрение разряда у потенциального электрода и раньше завершается формирование канала сквозного пробоя, тем меньшее развитие получает процесс у заземленного электрода, вследствие чего выше технологический эффект. В отношении этого условия вариант с положительной полярностью импульса (рис. 1.10а) предпочтительней, так как разрядный процесс у потенциального электрода начинается раньше, вынос потенциала на головку кистевого разряда приводит к резкому скачку напряженности поля в твердом теле и началу в нем разрядного процесса. Наоборот, внедрение объемного заряда в жидкость и на поверхность образца при отрицательной полярности импульса (рис. .10г,(),е) приводит к особенно значительному выравниванию электрического поля, снижению напряженности поля в твердом теле и сдерживанию развития разряда в нем. [c.28] Несмотря на одинаковую форму и симметричность расположения электродов на образце при заземлении одного из электродов выравнивающее действие потенциала земли ведет к снижению градиента поля у заземленного электрода и соответственно к задержке начала разрядного процесса. Это способствует повышению технологического эффекта, так как ведет к увеличению длины канала сквозного пробоя. [c.28] При отрицательной полярности импульса (рис.1.10 )) на развитие разряда в твердом теле у потенциального электрода оказывают действие несколько сдерживающих факторов - задержка начала разряда и более низкая скорость его развития в жидкостной прослойке. При этом у заземленного электрода получают наиболее выраженное развитие кистевые разряды по поверхности, а поэтому технологический эффект разрушения крайне незначителен. [c.29] При приподнятом заземленном электроде (рис.1.10б,е) условия для формирования канала сквозного пробоя в твердом теле наихудшие, особенно на импульсах положительной полярности (рис. 1.1 Об). В данном случае при отсутствии выноса потенциала земли на поверхность образца геометрия электрического поля изменяется в сторону его вытеснения из твердого тела в жидкостную прослойку. В результате этого кистевой разряд от потенциального электрода перекрывает значительную часть разрядного промежутка. На импульсах положительной полярности финальная стадия разряда происходит через жидкостный промежуток без внедрения. [c.29] В анализируемых выше случаях намеренно введены варианты с приподнятым электродом. В реальных условиях работы породоразрушающего устройства такие случаи возникают постоянно и отмеченный эффект приподнятого электрода дает ключ к решению задач повышения технологической эффективности процесса. [c.29] О соотношении средней скорости развития разряда по поверхности и в твердом теле можно судить по следующим данным. При пробое органического стекла в трансформаторном масле по схеме рис. 1.1 Ой (при положительной полярности импульса напряжения с крутизной фронта А = 300 кВ/мкс) значения скорости развития разряда по поверхности и в твердом теле соответственно составили (8.3-9.5)-10 и (14.1-26.7)-10 см/с. При отрицательной полярности импульса скорости развития разряда по поверхности соответственно составили у высоковольтного электрода 7.2-10 см/с, у заземленного - 7.0-10 см/с. [c.29] Глубина внедрения разряда. Важным параметром процесса является глубина внедрения канала разряда в твердое тело h, определяющая потенциальный объем откола материала от массива. Имелись попытки аналитического рассмотрения задачи о глубине внедрения канала разряда в твердое тело. И.И.Каляцким (1965 г., диссертация. Томский политехнический институт, г.Томск) задача рассмотрена в приближении, соответствующем замене реальной картины электрического поля между электродами породоразрушающего устройства полем на краю пластин плоского конденсатора. Предполагалось, что разряд развивается по направлению, соответствующему силовой линии поля максимальной напряженности, и при условии, что внедрение разряда начинается непосредственно с острия электродов или из точек, исчезающе мало удаленных от острия (рис. 1.11). [c.30] Результаты аналитического рассмотрения задачи о глубине внедрения разряда подтверждаются /16/ моделированием поля в электролитической ванне по методике полной проводимости электролитов. Графики поля для различных соотношений si и s показывают, что в рассмотренной стержневой системе электродов линия максимальной напряженности поля приурочена к среде под границей раздела и в исследованном диапазоне изменения ei/e2 от 0.1 до 10 величина прогиба изменяется в 1.5-2 раза. При моделировании развития поверхностного разряда обнаруживается значительное изменение поля в сравнении с начальным по мере продвижения разряда в глубь промежутка. С продвижением разряда на 1/3 промежутка условия для смещения линии максимальной напряженности поля в среду под границей раздела исчезают. [c.31] ПОЛЯ и соответственно траекторию канала разряда существенным образом влияют искажения поля, обусловленные составом и структурой горной породы. Меньшая глубина внедрения разряда и более резкое снижение М с ростом / отличает гетерогенные породы от гомогенных. [c.33] Показатель у комплексно отражает индивидуальные особенности разрушаемого материала в отношении пробоя и последующего разрушения и в определенном смысле может служить показателем электроимпульсной разрушаемости. Шкала электроимпульсной разрушаемости горных пород, в которой показателем разрушаемости принят коэффициент Vo предложена В.М.Зыковым (1967 г., диссертация. Томский политехнический институт, г.Томск). [c.34] Относительно степенного показателя функции V(l), на основе данных разных авторов для широкой гаммы горных пород в обобщенном виде можно заключить показатель степени всегда ниже кубической, уменьшается с ростом электрической прочности горных пород и степени их неоднородности, с увеличением разрядного промежутка и уменьшением крутизны фронта импульса напряжения. Это отражает объясненное выше отличие реального развития процесса в электродной конструкции от модельного рассмотрения со статической картиной электрического поля в промежутке. [c.34] Критериальные условия и вероятность пробоя. Критериальный параметр Ak=U/t (см. раздел 1.1), соответствующий равновероятности пробоя в параллельной системе сред и численно равный крутизне фронта косоугольного импульса напряжения, в значительной степени определяется тремя главными факторами видом горной породы, видом oкpyжiaющeй частицу разрушаемого материала внешней среды, формой импульса напряжения. В меньшей степени Ак зависит от геометрии электродов, величины разрядного промежутка и соотношения размеров разрядного промежутка и разрушаемого твердого тела. Особо отметим роль внешней среды. Важнейшей функцией среды является ограничение возможности развития разряда по поверхности материала, чем создаются благоприятные возможности для внедрения разряда в толщу твердого тела. Чем выше диэлектрические свойства внешней среды, тем проще реализуется процесс внедрения разряда в твердое тело. Наиболее предпочтительными в этом отношении являются минеральные масла и наиболее доступным является дизельное топливо как наиболее дешевое. В меньшей степени, но все же достаточно эффективно процесс реализуется и в воде. При более жестких условиях внедрение разряда в твердое тело достижимо также в вакууме, газовой или парогазовой среде. С ухудшением диэлектрических свойств точка равнопрочности сравниваемых сред смещается влево и численное значение критериального параметра Ак увеличивается. На импульсах с линейным нарастанием напря)кения (импульсы косоугольной формы) критериальный параметр Ак тождественен крутизне фронта импульса напряжения, и на основе обширного материала по электрической прочности различных горных пород оценка Ак имеет значения 200-500 кВ/мкс для системы горная порода - минеральные масла и 2000-3000 кВ/мкс для системы горная порода - вода . Применение данного критерия правомочно в достаточно широком диапазоне разрядных промежутков 10 -10 м и для геометрии электродов, свойственных технологическим устройствам разрушения пород. При другой форме импульсов напряжения параметр Ак корректируется коэффициентом, учитывающим форму импульса, в частности, на импульсах напряжения прямоугольной формы с наносекундным фронтом снижается на 20-30%. [c.35] Напряжение пробоя. В отношении электрической прочности горных пород и жидкостей применительно к условиям ЭИ имеются представительные данные /4,6/, полученные в диапазоне изменения экспозиции импульсного напряжения от Ю до 10 с (на импульсах прямоугольной формы в пределах до 10 с), разрядных промежутков до 10 м (в отдельных случаях до 0.3 м), давления до 150 атм, величины сосредоточенной нагрузки на электрод до 2500 кг/см и температуры до 160°С. Исследованный набор горных пород охватывает достаточно широкий диапазон изменения физико-механических свойств горных пород контактной прочности (64-290 кг/мм ), пористости (1-20.4%), прочности на сжатие (150-3900 кг/см ). Вольт-секундные характеристики пробоя некоторых горных пород и жидких сред на косоугольных импульсах напряжения представлены на рис. 1.16. [c.39] Показатель степенной функции U(d) в соотношениях (1.96), (1.9в) индивидуален для различных горных пород и находится в пределах 0.33-0.5. Это также имеет большое практическое значение, так как дает возможность интенсифицировать процесс электроимпульсного разрушения за счет применения электродных конструкций с увеличенными разрядными промежутками при приемлемых уровнях рабочего напряжения. [c.41] Эффект полярности как следствие механизма ударной ионизации (стримерной теории пробоя) проявляется при пробое в резко неоднородном поле в форме превышения электрической прочности диэлектриков при отрицательной полярности импульса над прочностью при положительной полярности импульса. При пробое горных пород эффект полярности наблюдается лишь у достаточно прочных кристаллических пород - кварцита, порфира, но выражен незначительно (7-10%). В электроимпульсных породоразрушающих устройствах с симметричными электродами (для бурения и резания горных пород) эффектом полярности практически можно пренебречь. [c.41] Вольт-секундные характеристики пробоя в параллельной системе сред горная порода-технологическая среда в условиях ЭИ аналогичны таковым для стандартных условий пробоя каждой среды в отдельности. Электрическая прочность системы сред является промежуточной между прочностями отдельных сред и аналогично им описывается вероятностной функцией (U) с нормальным распределением по Гауссу. Следует лишь учитывать комбинированный характер пробоя, общее увеличение длины канала разряда и факторы, связанные с влиянием формы электродов. В оптимальных условиях воздействия, когда вероятность пробоя твердого тела достигает максимума и становится наибольшей длина канала разряда, напряжение пробоя системы приближается к напряжению пробоя твердого тела в эквивалентном разрядном промежутке (I, =41/п) с подобной геометрией поля. [c.41] Вернуться к основной статье