ПОИСК Статьи Чертежи Таблицы Применение упругих решений в задачах теории пластичности, ползучести и вязко.упругости из "Расчет элементов конструкций из упругих неоднородных материалов " Задачи теории упругости неоднородных тел могут быть применены также при исследовании напряженно-деформированного состояния сред с более сложными соотношениями между напряжениями и деформациями — пластических, вязко-упругих и обладающих свойствами ползучести. [c.46] Решение многих упруго-пластических и пластических задач сопряжено со значительными трудностями, что обусловило широкое применение в теории пластичности различных приближенных методов, из которых наиболее распространенными являются вариационные и последовательных приближений. В методах последовательных приближений упруго-пластическая задача сводится к последовательному решению упругих задач, в связи с чем они называются методами упругих решений. Наиболее общий вариант этого метода разработан А. А. Ильюшиным [38]. В дальнейшем он был развит в работах И. А. Биргера. [c.46] Один из возможных вариантов метода упругих решений, предложенный И. А. Биргером [15, 87, 124], называется методом переменных параметров упругости. Суть его состоит в том, что задача теории пластичности сводится к последовательному решению задач теории упругости неоднородного тела. Очевидно, что изложенные в настоящей книге решения в значительной степени расширяют возможности этого метода. [c.46] Для линейно-вязко-упругих тел с помощью преобразования Лапласа по времени доказана аналогия с упругими задачами [109]. Вязко-упругое сопротивление обычно очень чувствительно к изменениям температуры, причем допуш,ение о постоянстве коэффициентов вязкости может иногда привести к нереальным решениям. Очевидно, что в атом случае возможно эффективное использование решений задач теории упругости неоднородных тел. [c.47] Вернуться к основной статье