ПОИСК Статьи Чертежи Таблицы Распространение волн по упругому стержню при наличии сухого трения из "Вибрация машиностроительных конструкций " Процесс деформации упругого стержня, связанного силами трения с жестким основанием, подробно описан Я. Г. Пановко [18]. Рассмотрим продольные колебания стержня при наличии сухого трения. [c.49] Положим, что начальные силы трения направлены в одну сторону и достигают экстремальных значений (Ро=1). [c.49] Функция у—2 (х) и соответствующая ей функция = 1 t) определяют фронт суммарной волны. [c.50] Если ограничиться рассмотрением случая й ( t) 0, которому соответствует постоянное направление скорости фронта волны, то условия (1. 37) упрощаются, так как при этом 5ю=51. [c.50] Функции 2 (у) И 2 1 (у) = —2ф y)/f (рис. 12) симметричны относительно оси у=х. Если 2 (у) известна для у у2, то из условия симметрии можно определить функцию 2 1 (у) для У2 2 (у). Вычитая 2 1 (у) из =2у—2и,о (у)//, можно последовательно продолжить значения функции г (у). [c.50] Если начальная скорость равна нулю, то z (0)=0 и для малых t можно положить, что Z t)=kt, где k=i — u (0)//-(- [1 — — п (0)//] — 1 ) 4 и (0) — начальное y i-.орение. [c.51] Таким образом, характер распространения волны по стержню при наличии сухого трения существенно зависит от предварительного смещения если силы трения в начальный момент достигают экстремального значения и направление их действия противоположно скорости конца стержня, то фронт волны распространяется неограниченно с постоянной скоростью, как и по стержню без трения во всех других случаях путь и скорость распространения фронта волны зависят от ускорения и характера распределения предварительного смещения по длине стержня. [c.52] Фронт суммарной волны дойдет до точки 51=Я2(т1—2xq) = =0,69хоЯо и вернется обратно к точке s=0 при t= xg. [c.54] При u s, t) — 0 и i Tj на участке 0s коэффициент р = -2/3. [c.54] Все последующие волны колебаний будут проходить также со скоростью а. и доходить до точки так как начальные силы трения для них определяются коэффициентом [р(=2/3. Чтобы обеспечить рассмотренный закон движения, к концу стержня необходимо приложить силу Р, амплитуда которой в 1,5 раза больше, чем при отсутствии трения. Изменение P—PuglEFbxg во времени показано на рис. 14 для случаев движения без трения (5) и с трением 4). Таким образом, при периодическом изменении скорости конца стержня устанавливается периодическое движение, не зависящее от начального предварительного смещения. [c.54] Характер предварительного смещения существенно влияет на пусковые нагрузки в длинных конвейерах. Рассмотрим движение конвейера, состоящего из упругого тягового органа, опирающегося на поддерживающие ролики, и привода с асинхронным электродвигателем. При движении тягового органа возникают силы трения, которые в первом приближении можно считать не зависящими от скорости [20]. Предположим, что конвейер работает на подъем груза и перед остановкой тяговый орган двигался вниз под действием веса груза. Силы трения, приложенные к тяговому органу, будут при этом направлены вверх. При пуске конвейера направление действия сил трения должно измениться на противоположное, т. е. р—Ро=—2. [c.54] Решение этого уравнения при нулевых начальных условиях щ ( ) = В 1к 1 — е ) для о i 21, /а . [c.57] Таким же образом можно последовательно найти скорость привода для i 1. [c.57] Натяжение сбегающей ветви найдено из условия отсутствия пробуксовки при пуске. Сравнение натяжений при рассматриваемых режимах пуска (см. рис. 15) показывает, что если направление сил трения при пуске конвейера меняется на противоположное () р — Рд 1=2), то максимальное натяжение, подсчитанное из условия отсутствия пробуксовки, значительно больше, чем при пуске конвейера, у которого предпусковое натяжение равно натяжению при установившемся движении, (Р —Ро=0). [c.57] Сравнение скоростей привода и центра тяжести системы (рис. 15, б) показывает, что скорость привода колеблется около скорости центра тяятести системы. [c.58] На рис. 16 показано сравнение расчетных (а) и экспериментальных (б) зависимостей скорости приводного шкива (1), каната (2) и натяжения набегающей (3) и сбегающей 4) ветвей каната 121 ]. [c.58] Вернуться к основной статье