ПОИСК Статьи Чертежи Таблицы Тенденции развития средств автоматизации серийного и массового производства из "Комплексная автоматизация производства " Длительное время основным направлением комплексной автоматизации машиностроения было решение задач, связанных с массовым производством, где создано и внедрено множество машин-автоматов и полуавтоматов, автоматических и поточных линий 80—90 % таких деталей, как блоки цилиндров и головки блоков двигателей, валы коробки передач, массовые подшипники и др., обрабатываются на автоматических линиях. Однако это оборудование как правило является специальным, т. е. на обработку других деталей не переналаживается. Поэтому серийное производство длительно базировалось только на универсальном неавтоматизированном оборудовании (токарные станки, кривошипные прессы, сварочные посты и др.), малопроизводительном, но достаточно мобильном (быстро переналаживаемом на обработку других деталей). Переломным моментом в автоматизации серийного производства явилось появление машин с числовым программным управлением, сочетавших высокие производительность и мобильность благодаря наличию систем управления на электронной основе. Первоначально с ЧПУ строились главным образом металлорежущие станки-полуавтоматы токарной, фрезерной, расточной и сверлильной групп. В настоящее время с ЧПУ выпускаются сварочные машины, прессы, станки для электрофизической и электрохимической обработки, термическое оборудование и др. Можно отметить некоторые тенденции развития оборудования с ЧПУ, характерные для современного этапа научно-технического прогресса. [c.9] Другой способ реализации принципов совмещения операций — создание од-нопозицнокных станков с многосторонней обработкой детали одновременно несколькими инструментами. По такому способу создаются и токарные станки, и станки для обработки корпусных деталей. [c.11] Наиболее радикальное решение рассматриваемых принципов — это создание станков с многошпиндельными коробками, что позволяет вести обработку конкретных деталей одновременно многими инструментами. Общий вид такой системы со сменными шпиндельными коробками показан на рис. 1.2. На четырехпозиционный зажимной поворотный стол 1 загрузочным устройством 2 подается обрабатываемая деталь 3, закрепленная на поддоне (приспособлении-спутнике) 4. Спутники до и после обработки перемещаются автоматически по транспортеру 5. Обработка деталей на поворотном столе производится посредством силовой головки 6, к которой по очереди подключаются многошпиндельные головки 7. Их комплект находится на замкнутом транспортирующем устройстве, представляющем собой магазин с автоматическим шаговым перемещением. Вся система работает в едином автоматическом цикле, который может задаваться как от индивидуального пульта управления, так и от управляющей вычислительной машины. [c.11] После того как очередная деталь на поддоне подана и закреплена на поворотном столе, начинается ее обработка. При каждом ходе силовой головки к ней подключается очередная шпиндельная коробка с набором инструментов. После окончания обработки одной стороны детали происходит поворот стола с при-способлением, и при очередном ходе обрабатывается другая плоскость. Число шпиндельных коробок на транспортирующем устройстве определяется конкретным объемом обработки каждой детали. [c.11] ДЛЯ обработки мелких корпусных деталей стремятся скомпоновать комплект многошпиндельных коробок непосредственно вокруг головки с вертикальной осью. Так, вертикально-сверлильный многоинструментный станок с ЧПУ типа 2175МФ2-1 Стерлитамак-ского станкостроительного завода им. В. И. Ленина имеет восемь многошпиндельных коробок, одну силовую головку и многопозиционный стол с автоматическим поворотом на заданный угол. В каждой позиции стола можно закреплять несколько мелких деталей, многошпиндельная коробка может производить обработку сразу на всех рабочих позициях, в то время, как на загрузочной позиции производится замена обрабатываемых деталей. Таким образом, станок сочетает принципы многоинструментной и многошпиндельной обработки (действуют сразу несколько десятков инструментов) и, хотя эквивалентен обычным агрегатным станкам, имеет широкие возможности переналадок. [c.12] Третья тенденция развития автоматизированного оборудования для серийного производства - создание унифицированных конструкций вместо специально разрабатываемых в каждом конкретном случае. В простейшем виде это создание гаммы оборудования на одной базе. На рис. 1.3 показана гамма продольно-фрезерных и расточных станков, имеющих единое компоновочное решение и номенклатуру основных узлов, но отличающихся числом и взаимным расположением силовых головок. Благодаря этому деталь может обрабатываться одновременно с двух-трех сторон пятью различными инструментами. Такое решение—результат опыта агрегатного станкостроения, накопленного при автоматизации массового производства. Имеются и другие идеи этого направления, например — унификация оборудования с различной степенью автоматизации. [c.12] Четвертая тенденция, которая все более влияет на развитие средств автоматизации серийного производства, — это переход от индивидуальных пультов программного управления (где программоносителями служат магнитная лента, перфолента и др.) к специальным управляющим мини-ЭВМ, что стало возможным благодаря успехам микроэлектроники и вычислительной техники. Переход от элементов с малой степенью интеграции, которые применялись в традиционных пультах ЧПУ, к большим интегральным схемам (БИС) позволяет резко уменьшить габариты управляющих устройств, повысить надежность в работе, расширить функциональные возможности управления. Следующим шагом является переход от специальных БИС к универсальным — так называемым микропроцессорам. Они включают помимо процессорных элементы постоянной и оперативной памяти, а также элементы связи с внешними устройствами. Путем комбинации этих элементов можно строить малогабаритные управляющие устройства, выполняющие широкий круг функций по обработке информации и управлению исполнительными органами в соответствии с заданной программой работы, сигналами датчиков и т. д. Поэтому отпадает необходимость в специальных программоносителях, лентопротяжных механизмах, считывающих устройствах и др. [c.13] Такие системы строятся для весьма широкой номенклатуры обрабатываемых деталей с различными методами и маршрутами обработки. Поэтому в основе их лежит гибкая межагрегатная связь, т. е. независимость функционирования технологического оборудования, и сложная транспортно-загрузочная система для обеспечения широкой вариантности транспортных маршрутов. Планировочная схема автоматизированного технологического комплекса с 10 единицами технологического оборудования приведена на рис. 1.4. Подробнее данные системы рассмотрены в п. 9.1. [c.14] Таким образом, при автоматизации серийного производства во все возрастающей степени используется опыт автоматизации массового производства (создание оборудования с совмещением операций, унификаций конструкций, автоматизация на уровне систем машин и т. д.). Развитие и совершенствование технических средств автоматизации массового производства (машин-полуавтоматов и автоматов, автоматических линий и цехов) продолжается, в том числе на основе опыта автоматизации серийного производства. Так, в автоматических линиях из агрегатных станков вместо прежних релейно-контакторных систем устройств управления и командоаппаратов на механической основе широко внедряются бесконтактные устройства и процессоры на электронной основе, вплоть до микро-ЭВМ, функционально сходных с аналогичными устройствами станков с ЧПУ и автоматизированных технологических комплексов. Это позволяет не только управлять всеми функциональными узлами (силовыми головками и столами, поворотными устройствами, шаговыми транспортерами, приспособлениями для зажима и фиксации деталей и др.), но и получать необходимую информацию для анализа функционирования линий, в том числе длительности простоев и их причин. [c.14] В автоматизированной обработке тел вращения типа колец одна из важнейших тенденций — создание комплексных автоматических линий, в которых сводится к минимуму или вообще исключается токарная обработка. Одними из первых систем такого типа были автоматические линии обработки подшипников карданных валов, где холодной штамповкой формировалась заготовка кольца, близкая по форме к окончательно обработанной детали. Это позволило сделать токарную обработку отделочной операцией. У нас в стране создан автоматический поток по производству колец шарикоподшипников без токарной обработки. Впервые в мировой практике для производства подшипников качения применен технологический процесс, при котором точные заготовки колец выполняются штамповкой из прутка и раскаткой с дальнейшей обработкой шлифованием с высокими режимами. [c.15] В автоматических линиях, предназначенных для изготовления мелких металлических или пластмассовых деталей, их сборки и пр., компонуемых на базе роторных машин, наметилась тенденция перехода к роторно-конвейерным системам, где детали непрерывно перемещаются на звеньях цепи. Применение роторно-конвейер-ных линий позволяет решать задачи автоматической смены инструмента без остановки линии, компенсировать неодинаковую стойкость различных компонентов инструментальных блоков (пуансонов и матриц) за счет их различного числа в машине. [c.15] Одной из особенностей научно-технического прогресса машиностроения на современном этапе в условиях как массового, так и серийного производства является широкое распространение промышленных роботов. Оно обусловлено, с одной стороны, массовой необходимостью в автоматизации многокоординатных перемещений деталей или инструментов, с другой —достигнутыми успехами в создании механизмов автоматической загрузки (автооператоров и манипуляторов), систем автоматического управления и регулирования и др. [c.15] Важнейшее преимущество промышленных роботов — возможность реализации циклов перемещений любой сложности с оптимальными режимами, с быстрой переналадкой, длительным поддержанием параметров процесса на необходимом уровне, что невыполнимо при ручных работах. Основные недостатки промышленных роботов, помимо их значительной стоимости, — невысокие быстродействие и точность позиционирования. Применительно к различным технологическим задачам значимость этих преимуществ и недостатков неодинакова. При сварке и окраске адаптация в управлении процессами позволяет поддерживать их параметры более стабильно, чем это может делать человек. Иные условия при транспортировании, загрузке и особенно сборке, где решающее значение приобретают такие факторы, как точность позиционирования и быстродействие при значительных перемещениях, совмещение различных действий во времени. Операции автоматической загрузки и сборки, связанные с перебазированием конструктивных элементов, — самые ненадежные в технологическом цикле. Так, исследования работоспособности специализированных загрузочных механизмов — автооператоров-показа-ли, что в токарных автоматах на долю указанных операций приходится до 70 % всех отказов. Наличие последних не исключено и при внедрении роботов, поскольку отказы обусловлены такими объективными причинами, как наличие стружки, нестабильность размеров деталей, погрешности позиционирования и др. Эти причины могут быть устранены лишь длительной доводкой конструкций. [c.16] Вместе с совершенствованием конструкций роботов, переходом от просто функционирующих к быстро и надежно работающим, необходим научно обоснованный поиск наиболее благоприятных условий их работы при первичном внедрении. Можно указать, например, на загрузку многопозиционных машин, которая совмещается с обработкой, на транспортирование очень тяжелых и очень мелких деталей и т. п. Исследования конкретных условий эксплуатации роботов и вытекающих отсюда требований к ним должны стать основой совершенствования их конструкций. [c.16] Вернуться к основной статье