ПОИСК Статьи Чертежи Таблицы Биологическое обрастание и коррозия в морских средах из "Морская коррозия " В гораздо более агрессивной среде, какой является морская вода, скорость коррозии определяется деятельностью и взаимодействием морских микроорганизмов и бактерий. В условиях постоянного полного погружения стальные пластины сначала корродировали с очень высокой скоростью, но быстро обрастали морскими организмами, в дальнейшем этот слой оказывал существенное защитное воздействие. В отсутствие обрастания наибольшие коррозионные потери массы (среди четырех партий образцов) наблюдались бы, несомненно, именно з морской воде. Такое предположение подтверждается сравнением данных для солоноватой и морской воды на рис. 121, а также результатами, полученными при испытаниях в Карибском море, которые обсуждаются ниже. В слегка солоноватой воде обрастание морскими организмами не присходит, поэтому скорость коррозии выше, чем в морской воде, хотя сама по себе малая соленость уменьшает коррозионную активность воды. В результате коррозионные потери в солоноватой воде после 4-летней экспозиции были гораздо выше, чем в морской воде, где проявилось защитное действие биологического обрастания. [c.443] В морской воде зависимость коррозионных потерь массы от времени, показанная на рис. 121, становится линейной пактически уже после 1 года экспозиции, что было бы невозможно, если бы коррозия определялась диффузией кислорода через постоянно растущий слой продуктов коррозии и морских организмов. Следовательно, необходимо искать другое объяснение. Полученные данные позволили предположить, что еще до первого измерения (1 год) покрытие, возникающее на металле одновременно в результате коррозии и обрастания, становится достаточно толстым и образует эффективный барьер для диффузии кислорода к корродирующей поверхности. Возможно, что прекращение доступа кислорода к поверхности металла связано не только с непроницаемостью образовавшегося слоя. Дышащие аэробные сапрофитные бактерии, присутствующие во внешнем слое, также могут частично или полностью поглощать направляющийся к металлу кислород. Возможность такого защитного действия названных организмов обсуждалась в литературе [65, 66]. [c.443] При прекращении или значительном уменьшении диффузии кислорода к поверхности металла скорость коррозии должна упасть до очень малой величины. В экспериментах, проведенных у острова Наос, такого эффекта не наблюдалось. Правда, учитывая очень высокую скорость обрастания в этом месте, можно, можно предположить, что такое замедление коррозии произошло еще до первого измерения, проводившегося после 1 года экспозиции. [c.443] Когда вследствие обрастания, образования продуктов коррозии и, возможно, оседания морской слизи возникает пленка, препятствующая диффузии кислорода, то на поверхности металла создаются анаэробные условия и становится возможным рост сульфатвосстанавливающих бактерий. Остальные из перечисленных выше условий в обычной морской воде выполняются всегда присутствуют ионы железа (из стали), сульфаты (из воды) и органика (разложение организмов, участвующих в обрастании). С началом деятельности бактерий коррозия, замедленная защитной пленкой, вновь усиливается и достигает постоянной скорости, уже не зависящей от толщины образующегося на металле слоя продуктов. При экспозиции у острова Наос стационарная скорость коррозии углеродистой стали составила, как показано на рис. 121, 0,07 мм/год. Это значение было достигнуто уже после первого года экспозиции и практически не менялось на протяжении всех 16 лет испытаний. [c.444] Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условиям постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444] Кроме углеродистой стали, в испытаниях у острова Наос было йс-следоиапо коррозионное поведение и других конструкционных сплавов на основе железа 8 низколегированных сталей, обработанная литая сталь и сварочное железо, полученное в процесе Астона. За исключением низколегированных сталей, содержащих хром (такие стали подвергались меньшей коррозии в начальный период, но затем коррозия усиливалась [61]), стационарные скорости коррозии всех исследованных материа- лов лежали в интервале 60—70 мкм/год. [c.445] Вернуться к основной статье