ПОИСК Статьи Чертежи Таблицы Электрохимические факторы в водородном охрупчивании из "Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов " Хотя при этом имеется тенденция к уменьшению зависимости от внешней среды, поскольку может происходить изменение потенциала внутри щели [178], все же среда оказывает существенное влияние на скорость (и даже на саму возможность протекания) процесса заострения, точно так же как это обстояло с первоначальным зарождением. [c.122] Таким образом, в отдельности или в комбинации, различные электрохимические факторы, способные воздействовать на процессы зарождения и заострения трещин, могут влиять и на скорость КР. Это справедливо даже в рассматриваемом здесь случае, когда в разрушении определенную роль играет водород. Кроме того., если преимущественное разрушение материала происходит в местах выделения второй фазы или связано с другими микрострук-турными элементами, то путь трещины может определяться расположением центров зарождения или повторного заострения трещин. Во многих системах сплавов особенно важным является присутствие хлор-ионов [2, 66, 186, 241]. Хорошо известным примером являются полученные Уильямсом и Экелем результаты для аустенитных нержавеющих сталей (рис. 45), указывающие на сложный характер взаимодействия кислорода и хлора. [c.122] Наконец, образование водорода в вершине трещины (или около вершины) также зависит от свойств среды, хотя возможность протекания гидролиза и изменений потенциала в щели, достигающие 1 В [178], свидетельствуют о том, что внешняя среда не всегда является определяющим фактором. Последнее обстоятельство особенно важно, когда КР протекает в условиях приложенного анодного потенниала (по отношению к разомкнутой цепи). [c.122] Один из возможных путей учета совместного влияния различных электрохимических факторов состоит в определении скорости репассивации сплавов данной системы в рассматриваемой среде. Выход ступеньки скольжения у вершины трещины может привести к повреждению пассивной пленки и последующему локальному растворению, или питтингу, а также к ускорению коррозионных реакций, в ходе которых выделяется водород. Скорость репассивации, таким образом, является мерой интенсивности таких процессов. Отметим, что планарное скольжение сопровождается образованием более крупных и более многочисленных ступенек скольжения, оказывая таким образом влияние на КР. Как было показано [99], скорость репассивации во многих случаях хорошо коррелирует с параметрами КР. По такой корреляции, следовательно, можно судить о взаимодействии и суммарном влиянии различных электрохимических факторов, хотя сама по себе она не позволяет определить механизм растрескивания. [c.123] В дополнение к сказанному можно привести еще один при.мер.. При испытаниях на КР в некоторых средах и при экспозиции в газообразном водороде кривые зависимости скорости роста трещины V от коэффициента интенсивности напряжений К (см. рис. 2) имеют довольно большое общее сходство, что проиллюстрировано рис. 46 и 47. При КР наличие участка II (рис. 46), на котором скорость роста трещины не зависит от К, интерпретируется как существование стадии процесса, контролируемой скоростью диффузии коррозионных агентов к вершине трещины, что согласуется и с температурной зависимостью [152, 296]. Наличие в целом аналогичной зависимости в случае водородного охрупчивания (рис. 47) показывает, что такую интерпретацию следует проводить, имея в виду поведение коррозионных агентов, определяющих процесс образования водорода. Предпринимаются попытки теоретического описания поведения в области II в рамках водородного процесса [15, 301]. [c.124] Зависимость скорости роста трещины V от коэффициента интенсивности напряжений К при различных температурах (цифры у кривых) для сплава М—2.ЯЯП, Испытания в водороде при 0.09 МПа 1207]. [c.124] В то же время следует напомнить, что сохраняют свое значение и традиционные методы испытания гладких образцов. В случае технических испытаний таких форм материалов, как лист или проволока, другого выбора, как правило, нет. Накоплен оченп большой объем информации о взаимосвязи поведения гладких образцов с различными эксплуатационными характеристиками материалов. Эти данные останутся полезными только при условии, что в дальнейшем, наряду с испытаниями, применяемыми в механике разрушения, будут проводиться и исследования на гладких образцах [6]. В случае сравнительно вязких материалов проведение испытаний по определению времени до разрушения или по исследованию зависимости о — К на образцах с предварительно наведенной трещиной может быть затруднено, особенно если прочность материала мала и изменение полного сечения образца препятствует проведению испытаний уже на ранней стадии. С большой осторожностью следует интерпретировать также поведение образцов, применяемых в механике разрушения, характеризуемых высокими скоростями деформации в вершине трещины и очень чувствительных к влиянию загрязнений [302]. Этим и другим подобным вопросам необходимо уделять внимание, чтобы использование методов механики разрушений не стало скорее модным, чем полезным. [c.125] Вернуться к основной статье