ПОИСК Статьи Чертежи Таблицы Роль металлургических факторов в процессах разрушения с участием водорода (Томпсон А. У., Бернстейн из "Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов " Во всех полных исследованиях коррозионной ползучести, рассмотренных в этой главе, уменьшение скорости установившейся ползучести под влиянием среды всегда сопровождалось увеличением времени до разрушения образца, т. е. длительной прочности, а меньшие времена всегда были следствием более высоких скоростей ползучести. Таким образом, независимо от типа разрушения, обратное соотношение между скоростью ползучести и длительной прочностью, описываемое уравнением (3), справедливо и при наличии влияния среды. [c.41] Что касается пластичности разрушения, то она при этом не подчиняется какой-либо определенной закономерности. Независимо от улучшения или ухудшения параметров ползучести на воздухе, наблюдалось как увеличение, так и уменьшение пластичности при разрушении. Однако, сравнивая результаты наиболее полных, исследований коррозионной ползучести, можно подметить некоторые характерные металлографические особенности преимущественных типов разрушения в различных средах. [c.41] При испытаниях мелкозернистого (размер зерна 250 мкм) суперсплава были получены по суищству такие же металлографические результаты на воздухе возрастает число трещин в местах пересечения межзеренных границ с поверхностью образца, а в вакууме — число полостей в местах стыка трех зерен [18]. Однако в случае мелкозернистого сплава зародившиеся на поверхности трещины при испытаниях на воздухе приводили ( в отличие от сплава с крупным зерном) к преждевременному разрушению, т. е. к меньшим значениям длительной прочности [18]. [c.43] Следует отметить, что согласно наблюдениям сильные окислительные среды, такие как воздух [55] и чистый кислород [32], усиливают внутреннюю кавитацию в образцах при испытаниях на ползучесть по сравнению со случаем менее окислительных сред. Является ли это результатом усиления скольжения по границам зерен в окислительных средах, можно установить только путем прямого сравнения характеристик скольжения в разных средах. [c.43] Для серьезного анализа условий, в которых поверхностное и внутреннее растрескивание становится важным фактором коррозионной ползучести, необходимо более глубокое и систематическое исследование всех аспектов ползучести и разрушения. Пока же, черпая необходимые сведения из работ, не связанных непосредственно с ползучестью, и наблюдая различия в микроструктуре разрушенных образцов после испытаний на коррозионную ползучесть, мы можем лишь строить догадки в отношении влияния среды на высокотемпературное растрескивание при ползучести. [c.44] Воздействие среды на высокотемпературное разрушение, в данном случае — разрыв, было бы лучше всего рассматривать, по-видимому, на основе представлений о зарождении и росте трещин. В общем случае нельзя заранее предполагать, что гетерогенность, вызываемая коррозией, всегда усиливает образование трещин. Хотя в окислительных газовых средах часто наблюдается более раннее зарождение трещин [18—21, 173], известны и случаи, когда окислительные среды замедляли растрескивание [25, 29, 61]. Подобный положительный эффект возникает, по-видимому, когда образующиеся продукты коррозии могут обволакивать поверхностные включения, являющиеся более вероятными концентраторами напряжений, чем сами коррозионные продукты. Способность фаз продуктов коррозии вызывать растрескивание зависит от хрупкости этих продуктов [116], напряжений, возникающих при их выделении [102], и морфологии [140]. Морфологический аспект особенно важен в случаях, когда межзеренные границы подвержены прямому окислению с образованием длинных клинообразных включений окислов [18—21, 103]. [c.44] Как и в случае уменьшения сил связи на границах зерен, можно рассмотреть влияние адсорбированных газов, приводящее к понижению поверхностной энергии сплава (в условиях минимального образования коррозионных продуктов, например, при низких температурах или в более инертных атмосферах). Этот эффект может изменить условия роста трещин и усилить растрескивание [25, 26, 57, 112, 157, 174—176]. [c.45] В то же время в случаях ускоренного роста трещин при окислении предполагается [18—21, 173, 177], что стимулирующее влияние окисления на поверхностное растрескивание и распространение трещин аналогично некоторым механизмам коррозионного растрескивания, таким как расклинивающее действие окисла [102] или растрескивание путем разрушения поверхностной пленки и репассивации [101, 178—182]. В обоих случаях ускорение растрескивания объясняется усиленной напряжением коррозией, заключающейся в чередующемся разрущении оксидной пленки и последующем быстром окислении незащищенного металла. Повышение скорости ползучести в средах, содержащих Na l, объяснялось либо подобным же ускорением растрескивания [183], либо общей коррозией под действием Na l [40], либо одновременным действием обоих факторов [184]. В любом случае следовало ожидать уменьшения пластичности, что и наблюдалось в действительности [40]. [c.45] Отметим также, что быстрое разрушение конструкций может быть вызвано значительным уменьшением нагрузочной способности из-за широкомасштабного замещения сплава в поперечном сечении хрупкими (или даже пористыми) оксидами и другими продуктами коррозии. Этот процесс обычно протекает при высоких температурах в очень агресеивных средах и приводит к глубокому проникновению коррозии или даже к сквозному разрушению материала. В подобных случаях залечивание разрушенного металла оксидами [29, 30, 103], конечно же, не происходит из-за быстрого уноса металла со смежных участков. Примеры сильного коррозионного разрушения в литературе встречаются часто [40, 103, 185] и здесь специально не рассматриваются. [c.45] Для сплава Удимет-700 с размером зерна 300 мкм, испытанного на воздухе при температурах 760 и 982°С, значения С составили 23 и 18, что близко к ожидаемому значению 20 [14]. При вакуумных (10 торр) испытаниях этого же сплава параметры Ларсона— Миллера при тех же температурах равны 41 и 33 соответственно. Таким образом, поскольку внешние условия по-разному влияют на характеристики ползучести, условия зарождения и роста трещин, нет никаких оснований считать параметры, входящие в рассмотренное эмпирическое соотношение, постоянными. [c.46] В этой главе дан обзор современного состояния знаний в области коррозионной ползучести и разрушения материалов. Понимание этих процессов основано главным образом на обобщении результатов многочисленных исследований коррозионной ползучести, не содержащих, как правило, систематического параметрического анализа. Определенная информация получена также в смежных областях, например прн исследовании коррозионной усталости и прочностных свойств плакированных металлов при комнатной температуре. К числу основных результатов следует отнести выводы об упрочняющем воздействии поверхностных оксидов (окалин) и об ухудшении параметров ползучести и разрушения в горячих агрессивных средах вследствие разрушения поверхностной окалины и химического воздействия на металл. [c.46] Внутреннее окисление, по-видимому, всегда упрочняет сплавы. В то же время воздействие коррозии на границы зерен и их скольжение пока изучены недостаточно. Еще меньше исследовано влияние коррозии на разрушение и высокотемпературное растрескивание в окислительных средах. Эти явления можно рассматривать только как совокупность конкурирующих процессов, таких как расклинивающее действие окисла, притупление растущих трещин и адсорбция газов. Изменение характера коррозионной ползучести в зависимости от размера зерна сплава, температуры и уровня приложенного напряжения показывает, что это комплексное явление действительно может быть описано только как совокупность конкурирующих и взаимодействующих процессов, (табл. 5). [c.46] В настоящее время очень велика потребность в полных параметрических исследованиях корпрзионной ползучести и разрушения с целью определения роли различных эффектов. В современной металлургии получение важных мик-роструктурных данных неизбежно отстает от накопления результатов механических испытаний. Материал данной главы показывает, что область коррозионной ползучести и разрушения могла бы стать исключением из этого правила. Действительно, высокотемпературная коррозия достаточно полно изучена под, микроскопом, чтобы судить, когда и как она происходит в сплавах. Теперь же необходимо установить влияние факторов среды на характеристики ползучести и разрушения в более систематических исследованиях, отдельные при- меры которых были рассмотрены в данной главе. [c.46] Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации. [c.47] В последние годы понимание роли, которую играют металлургические факторы в водородном охрупчивании, существенно улучшилось. Одна из задач данного обзора — подвести итоги этого развития. Поскольку считается, что водород принимает участие в самых различных процессах растрескивания в окружающей среде, то другая задача обзора состоит в том, чтобы распространить исследование роли металлургических факторов по крайней мере на некоторые случаи KP. Можно ожидать, что эти факторы действуют примерно одинаковым образом как при водородном охрупчивании, так н при KP, индуцированном водородом, особенно в тех случаях, когда водородные процессы являются доминирующими. [c.47] Следует также подчеркнуть, что авторы не разделяют точку зрения о существовании единственного процесса, вызывающего KP. В действительности есть случаи как чистых процессов растворения, так и чистого водородного охрупчивания, которые вместе с другими примерами образуют то, что в целом называют коррозионным растрескиванием под напряжением. Во многих случаях имеется вклад обоих упомянутых процессов. В данной главе сделан акцент на процессы, связанные с присутствием водорода, чтобы в наибольшей мере использовать то новое, что появилось в понимании водородного охрупчивания, однако это не следует истолковывать как механическое выделение одной части из целого. [c.47] Объединенная библиография по КР и водородному охрупчиванию весьма обширна (по некоторым оценкам в этой области имеется свыше 10000 работ) и авторы не намеревались давать детальный обзор литературы. Там, где это возможно, сделаны ссылки на более ранние обзоры. Основное внимание уделено результатам, полученным в последнее время, причем особенно подробно рассмотрен вопрос о том, в какой степени процессами КР и водородного охрупчивания можно управлять, изменяя металлургические переменные. Наличие подобной возможности также помогает точнее определить участие водорода в КР. Интерес к металлургическим (внутренним) факторам нс означает пренебрежения к факторам среды (внешним). Напротив, он имеет целью выяснение путей повышения стойкости к воздействию среды за счет целенаправленного изменения состава и структуры сплавов. [c.48] Водородное охрупчивание сравнительно просто проявляется в механических свойствах материала наиболее заметные изменения, как это следует из самого названия, чаще всего наблюдаются в параметрах пластичности. Коррозионное растрескивание, опять же по определению, связано с взаимодействием с окружающей средой, что может значительно усложнять явление. В настоящее время известно много самых различных комбинаций среда/материал, при которых возникает КР. В данной главе основное внимание будет уделено таким средам, где (по крайней мере при определенных условиях) может образовываться водород. Это дает возможность применить знания, связанные с поведением водорода в металлах. Такие условия существуют в большинстве распространенных сред (в частности, в водных хлоридсодержащих растворах). [c.48] Испытания на водородное охрупчивание обычно проводят с целью исследования какого-либо одного из двух типов поведения. Поведение I типа связано с кратковременными или мгновенными процессами, когда проникновение водорода в металл посредством диффузии невелико или отсутствует. Такие процессы исследуют с помощью испытаний на растяжение или методами механики разрушения при высоком или низком давлении газа. Поведение II типа характерно для тех случаев, когда водород попадает в решетку металла, что может произойти, например, при длительной эксплуатации конструкции в водородсодержащей среде. Такие условия моделируются путем проведения испытаний на образцах, предварительно наводороженных до перенасыщения в газовой фазе или электролитически. Используемые методики могут включать растяжение, разрушение, выращивание усталостных трещин или рост трещин при постоянной нагрузке. [c.49] Вернуться к основной статье