ПОИСК Статьи Чертежи Таблицы Катодная защита из "Антикоррозионная служба предприятий. Справочник " Теоретически полная защита металла от коррозии при катодной поляризации возможна тогда, когда металлу будет сообщен потенциал более отрицательный, чем термодинамический потенциал металла. Величина защитного эффекта при некотором смещении потенциала Дф определяется катодной и анодной поляризуемостью Дф/Дг системы. Катодная защита эффективна тогда, когда металл обладает большой катодной поляризуемостью и малой анодной, т. е. для смещения потенциала системы до потенциала защиты фз нужны относительно небольшие токи. Во всех случаях электрохимическая защита эффективна в средах с достаточно высокой электропроводностью. Как правило, ее широко применяют для защиты от коррозии в морской воде, в почвах, в грунтовых водах и т. п. [c.141] При практическом осуществлении катодной защиты используют значения минимальных защитных потенциалов и необходимую степень защиты, устанавливаемые экспериментально с учетом экономических и технических требований. [c.142] Другим фактором, который следует учитывать при катодной защите, является возможность наводороживания металла, что может приводить к водородной хрупкости и растрескиванию высокопрочных материалов. Если начальный потенциал анодного процесса отрицательнее равновесного потенциала водорода и перенапряжение выделения водорода на защищаемой поверхности невелико, то полная защита делается практически невыгодной. Например, катодная защита магниевых сплавов по этой причине малоэффективна. [c.142] Таким образом, для всех промышленных сплавов существует область оптимальных защитных потенциалов, определяемых как по физико-химическим, так и по экономическим соображениям. Применив катодной защиты ограничено в системах металл — раствор, где возможно проявление отрицательного защитного эффекта (переза-щиты). Это происходит в тех случаях, когда устойчивость металла определяется пассивной пленкой, а при катодной поляризации создаются условия для ее восстановления или разрушения. [c.142] Для аппаратурного оформления катодной защиты необходимы источник питания (станция катодной защиты), работающий в автоматическом режиме, электрод сравнения с устойчивым значением потенциала в условиях эксплуатации и анод, характеризующийся малой скоростью растворения при высоких анодных плотностях тока. [c.142] В качестве электродов сравнения используют медно-сульфатные и хлорсеребряные электроды. Конструкцию их выбирают с учетом условий эксплуатации (почвы, морская вода и т. п.), а число и размещение—в зависимости от заданной степени контроля защищенности изделия. [c.142] Для катодной защиты в почвах получили распространение железокремниевые аноды и стальные электроды в коксовой мелочи, для работы в морских условиях — платинированные титановые аноды. Размеры, конструкция, число анодов, место их расположения выбираются из условий допустимых анодных плотностей тока, электропроводности среды, обеспечения заданного потенциала и плотности тока на защищаемом объекте, особенностей эксплуатации. [c.142] Применение электрохимической защиты больших поверхностей металла нерационально в связи с большой энергоемкостью процесса. Поэтому в практике нашла применение комплексная защита поверхностей неметаллическими покрытиями в сочетании с электрохимической катодной защитой. При этом значительно уменьшается величина тока, необходимая только для защиты мест с нарушенным покрытием. Особые требования предъявляют к защитным покрытиям они должны обладать достаточным сопротивлением и быть стойкими в щелочной среде, которая создается при катодной поляризации. [c.142] Требования к материалу протектора, являющегося анодом, следующие достаточно высокий и стабильный потенциал по отношению к защищаемому металлу и максимально возможная токоотдача на единицу массы протектора. Для защиты изделий из стали, алюминия, свинца в подземных условиях используют протекторные сплавы на основе магния, алюминия, цинка. [c.143] В качестве материалов протекторов используют сплавы магния-с алюминием, цинком и марганцем алюминия с цинком, магнием, марганцем цинка с алюминием. Основная цель легирования — получение устойчивых электрохимических характеристик, высокой токо-отдачи и технологичности при изготовлении и установке протекторов. Важное значение имеет отсутствие вредных примесей, вызывающих пассивацию или повыщенное саморастворение протектора. Состав и свойства протекторных сплавов регламентированы нормативной документацией, так же как размеры протекторов, правила их установки для конкретных изделий. [c.143] Очень важное применение катодная защита находит для подавления местных видов коррозии медных сплавов, нержавеющих сталей в растворах хлоридов и в морской воде. Применение протекторов пз углеродистой стали, выполняемых в виде отдельных деталей конструкции или специальных протекторов, обеспечивает защиту медных сплавов от струевой и язвенной коррозии, нержавеющих сталей от питтинговой коррозии. Перспективно направление по созданию композитных конструкций, где за счет других деталей, элементов обеспечивается протекторная катодная защита наиболее ответственных узлов (запорные органы клапанов, рабочие колеса насосов, теплообменные трубы и т. д.). [c.144] Вернуться к основной статье