ПОИСК Статьи Чертежи Таблицы Разрушение полимерных покрытий и конструкций в агрессивных средах из "Антикоррозионная служба предприятий. Справочник " Конструкционный материал, контактирующий с агрессивной средой, для изготовления внутренних элементов аппаратов Конструкционный материал, контактирующий с агрессивной средой, для изготовления оболочек аппаратов, трубопроводов и т. п. [c.42] Для оболочек химических аппаратов и трубопроводов и многих силовых. элементов их конструкций характерными напряжениями являются растягивающие и изгибающие. Прп расчете и конструировании конкретных изделий возникает вопрос масштабного фактора вследствие зависимости механических свойств полимерных материалов от геометрических размеров. Этот вопрос еще более правомерен, когда речь идет о длительном контакте с диффундирующей средой, так как концентрация среды в объеме зависит от толщины образца. [c.43] Для решения задачи о прогнозировании работоспособности химического оборудования с полимерным покрытием необходимо прежде всего определить допустимые параметры эксплуатации такого оборудования, т, е. установить его предельное состояние — отказ. Под отказом понимается предельное состояние, при котором дальнейшая эксплуатация объекта невозможна. [c.44] Основное функциональное назначение любого антикоррозионно, го покрытия — обеспечение защиты материала конструкции от непосредственного контакта с агрессивной средой, от кавитационных, эрозионных и абразивных воздействий. Защитное покрытие может выполнять также и антиадгезионную роль, препятствуя налипанию или отложению компонентов среды на стенках аппаратов и трубопроводов. Химическое оборудование с полимерным покрытием выполняет различные функции, которые так или иначе влияют на выбор критерия отказа. Так, например, предельное состояние емкостной, колонной и реакционной аппаратуры с покрытием должно отличаться от предельного состояния насосов, вакуум-фильтров, центрифуг и т. д. Во многих случаях необходимо устанавливать предельные состояния для отдельных элементов и узлов аппаратов и машин форсунок, оросителей, мешалок, колес центробежных насосов п т. д. Такой подход позволяет более рационально выбирать тип и конструкцию полимерного покрытия. [c.44] Для защиты химического оборудования применяют два типа полимерных покрытий — пленочные и листовые. Эти покрытия могут быть получены на основе эластомеров, термореактивных и термопластичных полимеров. Листовые покрытия часто послойно сочетают в конструкции защиты слои различных термопластов, приклеенных с помощью термореактивных или эластомерных клеев. Используют также неадгезированные листовые покрытия при плакировании труб и в качестве вкладышей для защиты аппаратов. Для каждого типа покрытия необходимо устанавливать свое предельное состояние с учетом эксплуатационных свойств. [c.44] Эти факторы тесно взаимосвязаны и действуют на объект комплексно. Большое разнообразие агрессивных сред, широкий интервал температур и сложнонапряженное состояние покрытий требуют в каждом конкретном случае детального анализа внешних эксплуатационно-технологических воздействий на конструкцию с покрытием, для выбора предельного состояния. [c.45] Многофакторная задача выбора предельного состояния оборудования с полимерным покрытием требует глубокого научно обоснованного анализа каждого конкретного случая применения такого оборудования. Представляется целесообразным сформулировать несколько обш,их универсальных предельных состояний для химического оборудования с полимерным защитным покрытием, которые в целом охватили бы случаи отказов таких конструкций. Тогда задача о выборе предельного состояния для конкретной конструкции в конкретных условиях эксплуатации сводится к выбору такого сочетания предельных состояний, которое в полной мере будет отвечать функциональному назначению, типу и условиям эксплуатации конструкции. [c.45] Опыт эксплуатации химического оборудования с покрытиями и исследования защитных свойств полимерных покрытий позволяют сформулировать основные предельные состояния (отказы) таких объектов, расположив их по убывающей степени ответственности. [c.45] Первое предельное состояние заключается в нарушении сплошности защитного покрытия оно проявляется в образовании трещин, сколов, пор и других дефектов, через которые осуществляется непосредственный контакт агрессивной среды с защищаемой поверхностью. Нарушение сплошности, как правило, имеет местный или локальный характер, так как бывает вызвано различного рода механическими напряжениями, возникающими в системе металл — покрытие. Однако возникают ситуации, когда нарушение сплошности (разрушение) наступает практически по всей поверхности, например при химической или термической деструкции материала покрытия в случае интенсивного абразивного или эрозионного износа. Нарушение сплошности покрытия является наиболее опасным видом отказа, при котором дальнейшая эксплуатация конструкции невозможна требуется ремонт в случае местных повреждений или замена покрытий в случае повреждения большой части поверхности. Первое предельное состояние распространяется на все типы полимерных покрытий и все виды оборудования с покрытиями. [c.45] Третье предельное состояние определяется допускаемой коррозией металла под покрытием. Полимерные защитные покрытия проницаемы для таких агрессивных сред, как кислород, вода и электролиты. Поэтому под любым полимерным покрытием имеют место коррозионные процессы, характер и скорость которых регулируются проницаемостью покрытий. Коррозия металла под покрытием может вызвать отказ конструкции, если коррозионное повреждение металла достигает допустимого предела без нарушения сплошности и падения адгезионной прочности. [c.46] Вместе с тем коррозия металла под покрытием может быть причиной возникновения первого предельного состояния в результате накопления под покрытием твердых или газообразных продуктов коррозии, а также разрушения покрытия жидкостью, накапливающейся под покрытием за счет осмотического переноса воды через пленку к растворимым продуктам коррозии. Подпленочная коррозия металла и накапливающиеся продукты коррозии могут снижать адгезионную прочность полимерного покрытия. [c.46] Все три предельные состояния химического оборудования е покрытием взаимосвязаны и дополняют друг друга. [c.46] Помимо рассмотренных предельных состояний, могут устанавливаться и другие. Например, часто пользуются таким понятием, как непроницаемость (герметичность) покрытия. В этом случае з.ч предельное состояние принимают момент проникновения минимального количества среды к защипиемой поверхности. [c.46] При защите строительных конструкций и прежде всего химически стойких полов предельным состоянием является отсутствие значительных выбоин или отслоения от основания при ударных нагрузках (стационарных и от движущегося транспорта). [c.46] Учитывая, что рассмотренные предельные состояния взаимосвязаны, прогнозирование работоспособности оборудования с полимерным покрытием целесообразно начинать с третьего предельного состояния, далее в случае необходимости проверять по второму предельному состоянию и обязательно оценивать по первому предельному состоянию. [c.46] Если измерить скорость коррозии металла под различными полимерными покрытиями в агрессивных средах и связать ее с величиной потока компонентов среды через покрытие, то станет ясно, что в большинстве случаев скорость коррозии металла под покрытием связана с потоком компонентов среды весьма простыми закономерностями. [c.47] В тех случаях, когда покрытие выполняет роль диффузионного барьера, резко ограничивая доступ среды к поверхности металла, скорость подпленочной коррозии пропорциональна потоку среды через покрытие. Эта зависимость выполняется для адгезированных и неадгезированных покрытий. [c.47] Пользуясь полученными зависимостями скорости подпленочной коррозии металла от потока среды, можно прогнозировать работоспособность по третьему предельному состоянию — предельно допустимой коррозии металла иод покрытием. Предельно допустимую скорость коррозии металла иод покрытием необходимо задать на стадии проектирования конструкции с покрытием. Для обеспечения заданной скорости коррозии металла под покрытием необходимо подбирать материалы, количество слоев и толщину покрытия, пользуясь значениями коэффициента проницаемости компонентов среды. Такой подход используется для прогнозирования работоспособности по первому предельному состоянию, когда разрушение покрытия (нарушение сплошности) наступает в результате накопления под пленкой твердых или газообразных продуктов коррозии. [c.47] Вернуться к основной статье