ПОИСК Статьи Чертежи Таблицы Межфазное взаимодействие и влияние методов изготовления на свойства из "Структура и свойства композиционных материалов " Композиционные материалы являются гетерогенными системами которые состоят из нескольких фаз различной природы. Термодинамическая нестабильность большинства композиционных материалов приводит к межфазному взаимодействию компонентов как в процессе изготовления, так и в условиях эксплуатации. Некоторое взаимодействие на поверхностях раздела в композиционных материалах необходимо, так как через них осуществляется связь между составляющими композиции и передача напряжений. Однако интенсивное взаимодействие приводит к взаимному растворению компонентов, возникновению промежуточных фаз, которые во многих случаях образуют хрупкие зоны, ускоряющие появление трещин в волокне и оказывающие влияние на уровень механических свойств композиционного материала. Это вызывает необходимость детального изучения вопросов, связанных с взаимодействием матрицы и волокон при повышенных температурах. [c.29] При получении и эксплуатации композиционных материалов имеет место потеря прочности волокон и всего материала в целом. Это обычно определяют путем сравнения предела прочности экстрагированных волокон из композиций до и после длительных испытаний или после длительной эксплуатации, а также путем сравнения свойств материала с расчетными значениями по правилу смеси. [c.29] Потеря прочности волокон и композиционного материала по сравнению с расчетными значениями иногда достигает 30% например, по данным [120] волокна карбида кремния, экстрагированные из титанового композиционного материала системы титан— карбид кремния, имеют предел прочности 210 кгс/мм вместо предела 320 кгс/мм , измеренного до изготовления композиции. Наиболее существенными причинами указанного снижения свойств является химическое взаимодействие на границах раздела матрица—волокно и волокно—подложка. Причем первое имеет превалирующее значение, т. е. наиболее существенное снижение свойств наблюдается в результате растворения, образования новых фаз, охрупчивания и прочих процессов, протекающих на границе раздела матрицы с волокном. [c.29] Примером эмпирического подхода к решению задачи уменьшения взаимодействия между матрицей и волокном являются работы в области композиционных материалов с титановыми матрицами, описанные в [32]. [c.30] Таким образом, для получения композиционных материалов на основе титановой матрицы с оптимальными свойствами допустима определенная степень взаимодействия, интенсивность которой регулируется подбором соответствующего состава матрицы, защитными покрытиями либо применением высокоскоростных и низкотемпературных методов изготовления. [c.30] Изучение процессов взаимодействия в композициях системы никель — вольфрамовое волокно является крайне необходимым, поскольку эти материалы являются весьма перспективными для работы при температурах 1100—1200° С. [c.30] Выбор никелевой основы в качестве матрицы вызван тем, что именно на этой основе разработаны современные сплавы с наиболее высокими жаропрочностью и жаростойкостью. [c.30] Вольфрамовые волокна (проволока) обладают более высокой длительной прочностью при 1100—1300° С по сравнению с длительной прочностью волокон, изготовленных из других металлов. [c.30] Недостатками системы никель—вольфрам является ее нестабильность при высоких температурах. Указанные два компонента образуют систему с ограниченной растворимостью. Никелевый твердый раствор насыщается до равновесной концентрации 35% (по массе) вольфрама, а диффузионное проникновение десятых долей процента никеля в вольфрамовую проволоку снижает температуру рекристаллизации последней примерно на 200°, что одновременно приводит к снижению свойств таких материалов. [c.30] Советскими и зарубежными исследователями показана принципиальная возможность существенного уменьшения взаимодействия путем легирования матриц. Кардинальным решением этой задачи является создание специальных матриц, которые обладали бы не только меньшей реакционной способностью по сравнению с существующими матричными сплавами, но и одновременно имели бы меньшую плотность. Последнее связано с тем, что существенная жаропрочность никелевых композиций, армированных вольфрамовыми волокнами, достигается в том случае, когда объемное содержание последних составляет 40—60 об. %. Это естественно, вызывает значительное повышение плотности и снижение удельной жаропрочности, что накладывает ограничение на использование композиций в некоторых конструкциях. [c.31] Другим возможным путем предотвращения взаимодействия является создание барьерных слоев, т. е. покрытий на волокна. В качестве такого барьерного покрытия, обладающего химической инертностью по отношению к никелевой матрице, было использовано покрытие толщиной 5—6 мкм из нитрида титана, которое наносилось на вольфрамовые волокна путем восстановления тетрахлорида титана водородом в присутствии азота [7 ]. Эффективность покрытия нитридом титана вольфрамовых волокон проверяли на образцах композиционного материала, состоящего из матричного никелевого сплава, армированного вольфрамовыми волокнами с тонким слоем покрытия нитридом титана. После отжига образцов при температурах 1100—1200° С с выдержкой 1, 10 и 100 ч из композиций вытравливалась вольфрамовая проволока путем растворения матрицы. Предел прочности извлеченных волокон с покрытиями оказался выше предела прочности таких же волокон без покрытия. Это объясняется тем, что волокна без покрытия при изготовлении композиций, растворяясь в матрице при нагреве, уменьшают эффективный диаметр. Кроме того, покрытия залечивают некоторые поверхностные дефекты волокон. [c.31] В работе [7 на основе термодинамических данных, на примере барьерного покрытия нитридом титана показана возможность расчета условий равновесия указанного покрытия с жидким никелевым сплавом. Экспериментальная проверка показала, что в среде аргона нитрид титана интенсивно растворяется в никелевом расплаве ХН78Т (ЭИ435), в то время как в атмосфере азота нитридное покрытие не растворяется. [c.31] При решении вопроса о выборе матрицы и волокна в композиционном материале, технологии его получения и условий эксплуатации необходимо также учитывать механическую совместимость, т. е. соответствие температурных коэффициентов линейного расширения матрицы и волокна. [c.31] Взаимодействие наиболее эффективно протекает в композиционных материалах в процессе нагрева при их изготовлении, особенно жидкофазными способами, поэтому в ряде случаев предпочитают применять твердофазные технологические процессы, при которых в связи со сравнительно низкими температурами нагрева диффузия в значительной мере замедлена. Уменьшения взаимодействия матрицы с упрочнителем можно добиться разработкой высокоскоростных и низкотемпературных методов изготовления композиционных материалов. К таким методам изготовления композиций, при которых не успевают проходить диффузионные процессы и взаимодействие в такой мере, чтобы повлиять на снижение свойств, относятся взрывное прессование слоистых и волокнистых композиций [12], гидродинамическое горячее прессование [84] и другие методы твердофазного изготовления, например, композиционных материалов с никелевой матрицей, армированной вольфрамовой проволокой. Одним из наиболее прогрессивных методов изготовления композиционных материалов с металлическими волокнами является динамическое горячее прессование, при котором уплотнение волокнистых и слоистых композиций происходит под действием ударной нагрузки в течение долей секунды. [c.32] Легкие композиционные материалы с алюминиевой матрицей, армированной борными волокнами, получают главным образом методом диффузионного соединения [82]. [c.32] Регулирование анизотропии прочностных свойств в этих материалах связано со схемой армирования, являющейся также одним из важных технологических параметров. При ортогональной схеме укладки слоев армирующих волокон прочность (сг , а ) и модуль упругости Е , Еу) пропорциональны объемному содержанию волокон, расположенных в матрице в направлении растягивающих или сжимающих сил. При постоянном объемном содержании волокон изменение угла армирования однонаправленных материалов для уменьшения анизотропии прочностных свойств одновременно приводит к снижению прочностных свойств материала и в других направлениях. [c.32] Создание композиционных материалов нового класса стало возможным благодаря разработке и применению высокопрочных и высокомодульных борных и углеродных волокон, соединений ковалентного типа в виде нитевидных кристаллов и волокон карбидов, нитридов и других соединений, а также армирующих материалов на основе металлов, сталей и сплавов, обладающих высокой прочностью и высоким модулем упругости. [c.33] Волокна определяют уровень прочностных свойств композиционных материалов при условии их совместимости с матрицей. Напряжения, возникающие в колгаозиции при нагружении, воспринимаются в основном армирующими волокнами, которые придают композиции прочность и жесткость в направлении ориентации волокон. [c.33] Из всех известных армирующих материалов борные и углеродные волокна являются одними из наиболее перспективных для упрочнения алюминиевых, магниевых, титановых и других металлических матриц, в связи с тем что предел прочности указанных волокон составляет —350 кгс/мм , а модуль упругости —40 ООО кгс/мм при плотности 1700—2600 кг/м . Это обеспечивает достижение в композиционных материалах весьма высоких значений удельной прочности и удельного модуля упругости. [c.33] В настоящее время имеется перспектива дальнейшего повышения уровня указанных свойств волокон на 30—50% в результате усовершенствования их производства и использования новых видов сырья. Например, в лабораторных условиях уже получены отдельные образцы волокон с пределом прочности 500—700 кгс/мм [50]. [c.33] Вернуться к основной статье