ПОИСК Статьи Чертежи Таблицы Кинетическая энергия и риманова геометрия из "Вариационные принципы механики " Сделанное Декартом открытие, что геометрия допускает аналитическую трактовку, явилось существенной вехой в истории развития этой науки. Однако геометрия Декарта предполагала евклидову структуру пространства. Для введения прямоугольной системы координат необходимо принять постулаты конгруентности и постулат о параллельных прямых. [c.39] Это выражение есть следствие постулатов Евклида и определения координат X, у, z. [c.40] Величины в общем случае не являются постоянными, а представляют собой функции переменных х , х , х . Они оказываются константами только в случае прямоугольных и в более общем случае косоугольных координат. Для криволинейных координат значения меняются от точки к точке. Они зависят от двух индексов i и k и образуют двумерное многообразие, в то время как компоненты вектора, например, образук т одномерное многообразие. [c.42] Риман показал, как при помощи дифференцирования можно получить характеристическую величину — тензор кривизны , определяющий вид геометрии. Если все компоненты тензора кривизны равны нулю, то геометрия евклидова, в противном случае — неевклидова. [c.43] Когда специальная теория относительности Эйнштейна и Минковского, объединив время и пространство, показала, что геометрия природы имеет скорее четыре, а не три измерения, то это была еще геометрия евклидова типа. Лишь общая теория относительности Эйнштейна продемонстрировала, что линейный элемент с постоянными коэффициентами должен быть заменен римановым линейным элементом, содержащим десять функций gik четырех координат j , у, z, t. [c.43] Таинственная сила всемирного тяготения была интерпретирована как чисто геометрическое явление — следствие римановой структуры пространственно-временного континуума. [c.43] Абстрактные построения римановой геометрии были использованы не только в теории относительности, но и в аналитической механике. Понятие римановой геометрии и методы тензорного исчисления оказались естественным орудием при операциях по преобразованию координат, встречающихся при аналитической трактовке задач динамики. [c.43] Таким образом, кинетическая энергия частицы явно связана с линейным элементом ds и поэтому зависит от геометрии пространства. [c.44] Это означает, что вместо кинетической энергии всей системы можно рассматривать кинетическую энергию одной частицы с массой 1. Эта воображаемая частица является точкой ЗЛ/-мерного пространства конфигураций, символизирующей состояние механической системы. Вся система в целом изображается в этом пространстве в виде одной точки. Поэтому мы сможем применить к любой механической системе механику свободной частицы, поместив эту частицу в пространство с соответствующим числом измерений и соответствующей геометрией. [c.44] Геометрически каждое из этих уравнений представляет собой гиперповерхность в пространстве 3jV измерений. С-точка должна находиться в области пересечения всех этих гиперповерхностей, т. е. в подпространстве с числом измерений, равным = 3jV — т. Это подпространство является уже не плоским евклидовым, а искривленным римановым пространством. [c.45] Резюме. Возможность введения произвольных координатных систем и инвариантность уравнений механики относительно преобразований координат тесно связывают аналитическую механику с идеями и методами римановой геометрии. Движение произвольной механической системы мол ет рассматриваться как движение свободной частицы в соответствующем п-мерном пространстве с определенной римановой структурой. Кинетическая энергия системы определяет ри-манов линейный элемент пространства конфигураций. [c.46] Вернуться к основной статье