ПОИСК Статьи Чертежи Таблицы КЛАССИФИКАЦИЯ ТЕЧЕНИЙ ЖИДКОСТИ УСТОЙЧИВОСТЬ ДВИЖЕНИЯ из "Механика жидкости и газа Часть 1 " В 80-х годах прошлого столетия работы, связанные с изучением сопротивления движению жидкости при течении в трубах, зашли в тупик. Опыты одних исследователей (немецкий инженер-строитель Г.Хаген, французский врач Ж.Пуазейль) показали, что сопротивление линейно зависит от скорости. В то же время не менее тщательные и точные опыты французского инженера А.Дарси свидетельствовали, что сопротивление пропорционально квадрату скорости. Возникшее противоречие тормозило развитие инженерной практики и требовало разрешения. [c.83] Наблюдения, выполненные Г.Хагеном еще в 1855 г. показали, что характер движения в трубе изменяется при достижении каких-то определенных условий. На это же со всей определенностью было указано в 1870 году нашим соотечественником проф. Н.Н.Петровым при разработке им теории гидродинамической смазки. Эта гипотеза нашла блестящее подтверждение в опытах английского физика Осборна Рейнольдса, результаты которых были опубликованы в 1883-1884 годах и имели далеко идущие последствия для всей механики жидкости. [c.83] Идея опытов отличалась ясностью и предельной простотой. В стеклянную трубу, скорость движения воды в которой могла регулироваться, Рейнольдс вводил струйки красителя. При малых скоростях струйки двигались параллельно оси трубы и вся картина представлялась неподвижной. При увеличении скорости воды за счет открытия крана картина изменялась, струйка красителя сначала приобретала синусоидальную форму, а дальнейшее увеличение скорости приводило к ее размыву, что свидетельствовало о беспорядочном движении. [c.83] Первый режим - спокойный, слоистый без перемешивания частиц был назван ламинарным. Второй - бурный, хаотичный, приводящий к перемешиванию частиц, позднее по предложению У. Томсона (Лорда Кельвина) получил название турбулентного. Как истинный ученый, Рейнольдс не остановился на констатации факта. Он предположил, что увеличении скорости потока приводит к возникновению каких-то возмущений, дестабилизирующих его структуру. Если понимать под устойчивостью способность потока подавлять возникающие в нем малые возмущения, то переход к турбулентному режиму может рассматриваться как потеря устойчивости. При этом из двух категорий сил, действующих на жидкие частицы, вязкого трения и инерции, первые играют стабилизирующую роль, а вторые - дестабилизирующую. Таким образом, отношение этих сил может служить критерием (мерой) устойчивости потока, т.е. [c.84] В дальнейшем это соотношение получило название числа Рейнольдса, т.е. [c.84] Оригинальное толкование этого комплекса дано самим Рейнольдсом. Он писал Жидкость можно уподобить отряду воинов, ламинарное течение - монолитному походному строю, турбулентное -беспорядочному движению. Скорость жидкости - скорость отряда, диаметр трубы - величина отряда. Вязкость - дисциплина, а плотность - вооружение. Чем больше отряд, чем быстрее его движение и тяжелей вооружение, тем раньше распадается строй . [c.85] При рассмотрении уравнений движения вязкой жидкости (уравнений Навье-Стокса) отмечалось, что интегрирование их в большинстве случаев связано с непреодолимыми математическими трудностями. Однако известны и исключения. К числу их относится ламинарное течение между параллельными пластинами, одна из которых движется с какой-то скоростью и. Это так называемое течение Куэтта. [c.86] Рассмотрение закономерностей этого течения можно найти в оригинально построенном современном американском курсе прикладной гидродинамики Дейли Дж., Харлеман Д. Механика жидкости. -М. Энергия, 1971. - 480 с. [c.86] Другим примером, интересующим нас в данном случае, является установившееся течение в круглой трубе, происходящее под действием постоянного перепада давлений - течение Пуазейля. [c.86] Профессор медицины Жан Пуазейль (1799-1869 гг.) во введении к своему трактату Движение жидкостей в трубах малого диаметра писал Я начал свои исследования потому, что прогресс в физиологии требовал определения законов движения жидкости в трубах малого диаметра (порядка 0,1 мм). Конечно, Дю Буа, Жирар, Навье и другие уже исследовали эти проблемы, однако они нуждаются в дальнейшем аналитическом и экспериментальном изучении, что было необходимо для надежного согласования теории с экспериментом . Опыты, выполненные Пуазейлем с трубкой диаметром 0,14 мм согласовывались с полученным им соотношением до тех пор, пока длина трубки составляла 51 мм при уменьшении длины эта зависимость не соблюдалась. Этот факт и объясняется переходом от ламинарного к турбулентному режиму течения. [c.86] Как отмечалось выше, закономерности ламинарного течения в трубах можно получить путем прямого интегрирования уравнений Навье-Стокса. Решение задачи таким методом можно найти в книге Аржаников Н.С., Мальцев В.Н. Аэродинамика. -М. Изд-во оборонной промышл., 1956. -483 с. [c.86] В данном пособии мы воспользуемся другим способом, позволяющим получить более ясные физические представления. [c.86] Рассматриваем установившееся ламинарное течение в горизонтальной трубе, происходящее под действием постоянного перепада давления. Радиус трубопровода - R. [c.87] Двумя сечениями, отстоящими на расстоянии I друг от друга, выделим отсек трубопровода, и в нем цилиндр радиуса г. Составим уравнение движения. Так как течение установившееся, то сумма проекций на ось всех сил, действующих на цилиндр, должна быть равна нулю. Другими словами, активные силы, приводящие частицы жидкости в движение, должны быть равны силам сопротивления. [c.87] Активные силы р А - Р2А - АрА - тгг Ар. [c.87] Знак минус потому, что направления отсчета у и г противоположны. [c.87] Из чего следует, что в поперечном сечении трубы скорости распределены по параболическому закону, т.е. эпюра скорости представляет собой параболоид вращения. [c.88] Из чего следует, что отношение скорости в любой точке к скорости на оси не зависит от расхода, рода жидкости и материала стенок трубы при всех значениях Ре / е р оно одинаково. [c.88] заменяя радиус диаметром. [c.89] Вернуться к основной статье