ПОИСК Статьи Чертежи Таблицы Классификация сил, действующих при колебаниях из "Теоретические основы динамики машин " При определённых допущениях все разнообразные по своей природе внешние и внутренние силы, действующие в колеблющейся системе, можно разделить на несколько характерных групп. [c.5] Обобщенные вынуждающие (возмущающие) силы - это внешние силы, являюш,иеся заданными функциями времени, не зависяш,ие от движения системы, но влияющие на него. Причины возникновения этих сил весьма разнообразны. Нанример, нри работе электродвигателя, установленного на балке или на каком-либо фундаменте, вследствие неуравновешенности ротора возникает центробежная сила инерции, вертикальная составляющая которой вызывает колебания опорной конструкции. Этот вид возбуждения колебаний называется инерционным. Возможны другие причины возникновения вынуждающих сил, например, периодические изменения давления в цилиндрах двигателей внутреннего сгорания или периодические изменения сил притяжения электромагнитов, питаемых источником переменного тока. [c.6] Все перечисленные случаи представляют собой силовое возбуждение вынужденных колебаний. В некоторых случаях возбуждение колебаний задаётся кинематически, например автомобиль, движущийся по неровной дороге. Такое возбуждение всегда можно заменить эквивалентным силовым возбуждением. [c.6] Весьма разнообразны законы изменения возмущающих сил во времени. Наиболее часто встречаются периодические вынуждающие силы. Особую роль здесь играет гармоническая вынуждающая сила, т.е. сила, которая изменяется во времени по закону синуса или косинуса. Такая сила возникает при работе машин с равномерно вращающимися роторами. Машины с кривошипо-шатунными механизмами также вызывают появление периодической возмущающей силы, которая, однако, не является гармонической. [c.6] Возможны также колебания, обусловленные действием непериодических вынуждающих сил, представляющих собой случайные функции времени - случайные процессы. К последним относится, например. [c.6] Обобщенные позиционные силы - это силы, зависящие от положения точек системы, т.е. от обобщенных координат. Особое значение здесь имеют восстанавливающие силы, которые возникают при отклонении системы от положения равновесия. Эти силы обусловливают способность системы совершать свободные колебания. Основным типом восстанавливающих сил являются силы упругости. В простейшем случае линейно деформируемой системы восстанавливающая сила упругости пропорциональна отклонению системы. Свойства упругих связей при этом определяются коэффициентом жесткости, который представляет собой обобщенную силу, способную вызвать обобщенное единичное перемещение. Возможны случаи, когда между силой и отклонением существует нелинейная зависимость. При этом упругие свойства связей невозможно определить одним коэффициентом и приходится использовать так называемую упругую характеристику, уравнение которой Р=Р(х) иллюстрируется графиком в координатах х, Р. Упругая характеристика строится расчетным путём или экспериментально. [c.7] Наряду с силами упругости восстанавливающими свойствами обладают также сила плавучести и в определенных случаях сила тяжести. [c.7] Обобщенные силы трения зависят от обобщенных скоростей и направлены противоположно движению. Эти силы совершают необратимую работу, что приводит к диссипации (рассеянию) механической энергии, поэтому иногда их называют диссипативными силами. Обычно силы трения препятствуют движению исключение составляют автоколебательные системы. Диссипативные свойства описываются при помощи характеристик трения, которые представляют собой графические зависимости вида К = кх. В ряде случаев характеристика трения может быть нелинейной или разрывной. [c.7] Вернуться к основной статье