ПОИСК Статьи Чертежи Таблицы Некоторые сведения из физики твердого тела из "Энергия " Далеко не все вещества обладают светочувствительностью, и только немногие из них могут использоваться в качестве фотоэлектрических преобразователей. Светочувствительность веществ обусловлена рядом особенностей их микроструктуры. Для уяснения этих особенностей обратимся к некоторым вопросам атомной физики в приложении к твердым телам. [c.96] Взаимосвязь между строением электронной оболочки атомов и физическими свойствами твердых веществ сегодня хорошо изучена. Это означает, что разработаны математические модели, позволяющие достаточно надежно описать рассматриваемое явление. [c.96] Для описания систем на атомном уровне используется квантовая механика. Ее математический аппарат достаточно сложен и здесь не рассматривается. Приведем только некоторые результаты расчетов, хорошо совпадающие с наблюдениями. [c.96] Энергия, которой может располагать совокупность атомов,в заданном интервале принимает только определенный набор дискретных значений. Для каждого элемента имеется свой набор таких значений энергии. Энергетические состояния атома или совокупности атомов можно характеризовать либо квантовыми числами,-либо значениями энергии. Степени свободы (физические) — вращательная, колебательная, спин и т. д. — характеризуются квантовыми числами. Не существует систем с идентичными квантовыми числами. Это, в частности, означает, что в одном и том же энергетическом состоянии могут находиться только два электрона и только при условии, что их спины имеют противоположную ориентацию. [c.96] Если зона запрещенных энергий очень узка (четвертый тип структуры, показанный на рис. [c.97] Ширина запрещенной зоны Eg для полупроводников, используемых в фотоэлектрических преобразователях, показана иа рис. 5.8, из которого видно, что она слабо зависит от температуры. С другой стороны, как видно из рисунка, зависимость КПД фотоэлектрического преобразования энергии от температуры весьма сильна. Видно также, что запрещенные зоны для всех фотоэлектрических полупроводников лежат в видимой части спектра. Под воздействием солнечного излучения в них появляются свободные электроны. На месте, откуда ушел свободный электрон, остается положительно заряженный ион или, как принято говорить, дырка- . Будет протекать и обратный процесс — рекомбинация дырок и электронов. За счет рекомбинации количество фотоэлектронов, создающих ток во внещней цепи, будет уменьшаться. [c.97] Если пластины из кремния п- и р-тнпов приведены в тесный контакт, то свободные электроны и свободные дырки, диффундируя к поверхности р-п перехода, будут рекомбинировать, как показано на рис. 5.11, а, образуя слой, обедненный носителями заряда, который носит название обедненной зоны. При этом атомы примеси в области перехода, лишенные соответствующих дырок или элементов, превратятся в ионы. Эти донорные или акцепторные ионы, закрепленные в кристалле, создают электрическое поле, образующее электрический потенциальный барьер Uq, препятствующий дальнейшей миграции основных носителей, как показано на рис. 5.11,6. На рисунке показано, как меняется потенциал при пересечении р- -перехода. После того как два куска вещества приведены в соприкосновение, должно произойти выравнивание их уровней Ферми. Ток неосновных носителей, не встречающий потенциального барьера, достигает значения тока насыщения /нлс, а ток основных носителей блокируется потенциальным барьером qil . Значение потенциального барьера невозможно измерить каки.м-либо прибором, поскольку на измерительных контактах формируется такой же барьер противоположного знака. [c.98] Вернуться к основной статье