ПОИСК Статьи Чертежи Таблицы Влияние легирующих и модифицирующих элементов на свойства белых износостойких чугунов из "Износостойкие сплавы и покрытия " Белый чугун по сравнению с серым обладает более высокой твердостью и износостойкостью, так как весь имеющийся в нем углерод находится в виде химических соединений —карбидов с металлами (Fe, Сг, W и др.), а мягкая неметаллическая составляющая (графит), отсутствует. В связи с этим белый чугун применяют как конструкционный материал для работы в условиях абразивного изнашивания. [c.50] Для повышения надежности и долговечности деталей онтималь-ный состав металла следует выбирать на основе научного анализа механизма работы отливок в различных условиях. Многочисленные варианты применения отливок из белого чугуна можно условно разделить на две группы работающие в условиях абразивного износа и безударных нагрузок (детали насосов, земснарядов, дымососов, колена и трубы пневмотранспорта, прокатные валки и др.) работающие в условиях абразивного износа в сочетании с ударными нагрузками (мелющие тела, бронефутеровочные плиты, детали дробеметных установок, горнорудного оборудования и т. д.). [c.50] Наряду с обычными отливками в последние годы все шире применяют детали с дифференцированными физико-механическими свойствами, в которых отбеленный слой получают только на рабочей поверхности. [c.50] Структура нелегированного и низколегированного белого чугуна состоит из перлитной матрицы и карбидов типа РезС или (Fe, Сг)зС. Такой чугун имеет высокую твердость, не поддается при обычных режимах механической обработке и обладает повышенной хрупкостью. Износостойкость чугуна доэвтектического состава (2,8—3,5% С) лишь на 50—80% выше по сравнению с углеродистыми сталями. Большая склонность белого чугуна и отдельных его структурных составляющих (особенно цементита) к хрупкому разрушению часто является причиной снижения сопротивления абразивному изнашиванию в условиях работы с ударом. [c.50] Известно, что элементы, увеличивающие отбеливаемость, можно расположить в порядке возрастания эффективности их влияния следующим образом Мп, Мо, Sn, Сг, V, S, Те. Модификаторы, используемые для получения высокопрочного чугуна с шаровидным графитом, — магний и церий увеличивают склонность к отбеливанию. [c.51] Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношения). Основные структурные составляющие белого чугуна распола гаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды. [c.51] Цементит характеризуется ромбической решеткой. В элементарную ячейку с параметрами а=0,45144 нм (4,5144 А) 6=0,50787 нм 5,0787 А) с = 0,6729 нм (6,7287 А) входят 12 атомов железа и че тыре атома углерода. [c.51] При кристаллизации эвтектического расплава диффузионное разделение жидкости на отдельные составляющие эвтектики приводит к ускоренному росту эвтектического цементита по сравнению с ростом первичных дендридов аустенита. Увеличение переохлаждения расширяет область кристаллизации эвтектики, так как скорость роста цементита превышает скорость образования и роста эвтектического аустенита. Это объясняется тем, что формирование последнего задерживается вследствие замедленной диффузии, т. е. эвтектический распад расплава с появлением механической смеси протекает быстрее, чем выпадение фаз, образующих эту смесь. Эта особенность эвтектической кристаллизации чугунных расплавов, богатых углеродом, расширяет область существования псевдоэвтек-тических структур. [c.52] Таким образом, от степени переохлаждения зависит только дне--персность цементитной эвтектики. С увеличением скорости охлаждения концентрация углерода в аустените и эвтектическом расплаве значительно отличается от равновесной. При этом изменяется и относительное количество дендридов аустенита и цементитной эвтектики последней при низких скоростях охлаждения меньше,, чем при высоких скоростях. [c.52] Зерна карбидов практически не обладают пластичностью, поэтому при воздействии абразивных частиц деформация происходит путем перемещения зерен основы. При высокой концентрации карбидной фазы в сплаве возможность перемещения карбидов в металлической основе уменьшается. При весьма тонкой металличес кой прослойке между карбидами или прочном каркасе из карбидов и эвтектики твердость белого чугуна приближается к твердости карбидов, но в связи с уменьшением возможности перемещения карбидов или каркаса при деформации сплав охрупчивается. Это обстоятельство является причиной малой пригодности для работы в условиях ударно-абразивного износа сплавов, обогащенных карбидной фазой. [c.52] Определение ударной вязкости белых чугунов не дает надежной информации об их работоспособности при абразивном износе в со- четании с ударами. Более рациональны испытания на многократный удар, а также оценка вязкости разрушения при плоской деформации. [c.52] Принятые условные обозначения Н — микротвердость (Нэ — эвтектоида — перлита, сорбита, троостита), Нц — цементита, Нф — феррита. На — аустенита, Н — мартенсита, Нк — карбидов, Н .б— карбоборидов, Нл —ледебурита) Е — коэффициент относительной износостойкости N — удароустойчивость образцов (число ударов до разрушения). [c.53] Чугунные образцы исследовали в основном в литом состоянии,, а стальные — в литом состоянии, после отжига, закалки и отпуска. [c.53] Вернуться к основной статье