ПОИСК Статьи Чертежи Таблицы Вязкая неустойчивость Тейлора—Гертлера из "Струйные и нестационарные течения в газовой динамике " Изложение результатов необходимо начать с некоторых общих рассуждений. В качестве начальных опорных собственных значений были взяты невязкие параметры волн, полученные при достаточно малых, но конечных частотах (8Ь). Необходимо было удостовериться в том, что они действительно близки параметрам стационарных возмущений. Рис. 5.24 подтверждает это. При 8Ь — О а — О, а а меняется незначительно. Это позволяет надеяться, что результаты невязкого анализа верны по своей сути. [c.148] Видно (на оси а = О приведены значения критических чисел Рейнольдса Re ), что крупномасштабные вихри (малые п) теряют устойчивость при более низких Re, и существует диапазон значений Re, в котором они имеют значительно большие инкременты по сравнению с мелкомасштабными вихрями. [c.149] Более полная трактовка данного вывода проиллюстрирована на рис. 5.26. Здесь показаны коэффициенты а для разных мод в широком диапазоне чисел Re при тех же Mq, Rq, S- Штриховой линией представлены невязкие инкременты. Из рисунка хорошо видно, при каких значениях Re можно пользоваться невязкими значениями. Довольно неожиданным был вывод о сильном влиянии вязкости на спектральные характеристики возмущений Т-Г в свободных слоях смешения с перегибными средними профилями скоростей (5.1). [c.149] Классические нейтральные кривые и линии равного усиления даны на рис. 5.27. Выше нейтральной кривой а = О лежит область устойчивости, ниже — неустойчивости. Выяснено, что мода п = 3 является граничной, и волны с п = 1 и 2 неустойчивы при любых параметрах потока. [c.150] На рис. 5.28 представлены нейтральные кривые, определяющие зависимости критических значений чисел Рейнольдса от толщин 6 и радиусов кривизны Яо. Из рисунка следует, что по мере утолщения слоя смешения в процессе растекания струи волны стабилизируются, что особенно заметно на высоких модах. Также ясно, что при росте Яо происходит уменьшение центробежных сил и, естественно, уменьшение эффекта их действия. Это полностью согласуется с выводами невязкого анализа. [c.150] Влияние числа Маха истечения на а, п = 5 (]), 10 (2). [c.151] Также не противоречат невязкому анализу данные о зависимостях инкрементов от числа Маха истечения, представленные на рис. 5.29. С ростом Мо инкременты возмущений уменьшаются и очень скоро становятся декрементами (исследованы околокрити-ческие Re для Мо = 1,5). [c.151] Т-Г вводится параметр (или число) Гертлера G = Re/iEo, описывающий соотношение вязких и центробежных эффектов. Кривые Re (G) для п = onst отделяют области устойчивости (левее и ниже линий Re, ) от областей неустойчивости (правее и выше их). Эти кривые, рассчитанные при малых толщинах 6 для наиболее характерных значений радиусов искривления, дают опорные критические значения практически для всех возможных параметров, имеющих место в струях. [c.151] к примеру для 5 = 0,1 Евт 1200, а это опять тот диапа зон, где влияние вязкости ощутимо. К тому же по мере растекания струи инкременты мелкомасштабных вихрей уменьшаются значительно быстрее, что и приводит к фиксации их в виде затухающих. [c.152] Проведенное исследование позволило сделать вывод о том, что хотя в свободных пограничных слоях с перегибом вязкость не является первопричиной появления вращательной неустойчивости, однако именно она определяет эволюционную данамику волнового процесса. [c.152] Эти положения проиллюстрированы на рис. 5.32, где штриховые линии соответствуют линейным амплитудам, а сплошными показаны продольные распределения а в фазах максимальной и минимальной передач (кривые 1 и 2 соответственно). Обнаружено, что рост амплитуды наблюдается в областях синхронизма при к и Н, отличных от нуля, а степень роста амплитуды двойной частоты при близких начальных значениях имеет один порядок в обоих случаях. Здесь а1 хо) = а2(хо)/к, к = = 200, 20, 2. [c.155] Проведенное моделирование позволяет выявить роль трехволнового взаимодействия на начальном участке струи и будет полезно в создании ясных представлений о факторах, влияющих на продольную динамику амплитуд неустойчивых колебаний, а следовательно, и на степень акустического излучения сверхзвукового потока. [c.156] Известно, что структура начального участка сверхзвуковой газовой струи состоит из системы криволинейных скачков уплотнения, волн разрежения и слоев смешения [1-5]. Результаты изучения слоя смешения на границе сверхзвуковой неизобарической струи приведены в работах [3, б, 7]. Сравнительно недавно начато исследование явления образования и возникновения продольных вихревых структур в слое смешения свободной неизобарической сверхзвуковой струи, истекающей в затопленное пространство, при высоких числах Рейнольдса, что представляет собой развитие нового научного направления исследований. Интерес к этому явлению обусловлен применением сверхзвуковых струй и слоев смешения в таких технических устройствах, как эжекторы, камеры смешения и т.д., а также поиском способов управления процессом смешения и звукообразования [8 -12. [c.159] При исследовании процесса истечения осесимметричной сверхзвуковой струи в соосный цилиндрический канал с внезапным расширением, выполненном в [13], отмечалось возникновение продольных вихрей в области присоединения струи к внутренней поверхности канала. При трактовке результатов наблюдений была высказана гипотеза о том, что основной причиной образования продольных вихрей является потеря устойчивости пограничного слоя при его резком повороте, когда нарушается равновесие между центробежными силами и силами давления . В работе [14 изучен механизм взаимодействия сверхзвуковой струи с жидкой поверхностью, важной особенностью которого является наличие продольных вихревых структур в зоне присоединения потока. В 1983 г. Г. Ф. Глотовым на основании анализа шлирен-фотографий свободных сверхзвуковых недорасширенных струй, истекающих в затопленное пространство, была высказана гипотеза о наличии в сверхзвуковой недорасширенной струе вихрей Гертлера. [c.159] Ниже приведен обзор экспериментальных данных, которые подтверждают факт существования продольных вихревых структур в слое смешения сверхзвуковой нерасчетной струи. Продольные структуры зарегистрированы как методами визуализации оптических неоднородностей в газовом потоке (шлирен-метод, метод лазерного ножа), так и зондовыми методами измерения полного давления на внешней границе струи. Стационарные азимутальные неоднородности газодинамических параметров на границе струи связываются со стационарными продольными вихрями Тейлора — Гертлера, появление которых обусловлено добавочными центробежными силами, возникающими из-за искривления траектории движения газа на начальном участке неизобарической струи. [c.160] Спектральный состав естественных возмущений указывает, что стационарные азимутальные неоднородности представляют собой суперпозицию разномодовых спектральных составляющих. Наблюдается затухание спектральных составляющих с большими волновыми числами, что связывается как с процессами укрупнения вихрей, так и с возможным нарушением стащюнаркой структуры вихрей. [c.160] Основные элементы ударно-волновой структуры сверхзвуковой недорасширенной струи, истекающей в затопленное пространство, хорошо видны на шлирен-фотографии течения, представленной на рис. 6.1, а. Струя истекает из осесимметричного конического сопла Лаваля с углом полураствора на выходе сопла 0 = 8. Дозвуковая часть сопла имеет профиль Витошинского. [c.161] Геометрическое число Маха на срезе сопла Мд = 1,5, число Рейнольдса, вычисленное по параметрам потока на срезе сопла и его диаметру, Ее = степень нерасчетности струи, определяемая как отношение давления на срезе сопла к давлению в затопленном пространстве, = Ра[Рн = 4,15. [c.161] На рис. 6.2, б представлена схема течения, коюрая основана на анализе картин визуализации и результатов измерения параметров течения в струе зондовыми методами. Так как в сверхзвуковой струе основная масса газа течет в пределах сжатого слоя, то в этом слое наблюдается высокая концентрация частиц, что приводит к увеличению интенсивности рассеянного света, что в свою очередь проявляется в виде более светлой области поперечного сечения струи. [c.163] Вернуться к основной статье