ПОИСК Статьи Чертежи Таблицы Механические схемы и режимы интенсивной пластической деформации из "Наноструктурные материалы, полученные интенсивной пластической деформацией " Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультра-мелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрущений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19]. [c.9] В этой главе будут рассмотрены вопросы реализации основных методов ИПД, их схемы и оптимальные режимы, а также представлены данные по эволюции исходной микроструктуры в ходе формирования наноструктурного состояния при интенсивных деформациях. [c.9] К числу основных методов, с помощью которых были достигнуты большие деформации с истинными степенями, равными 10 и более, без разрушения образцов, относятся кручение под высоким давлением (рис. 1.1а) и РКУ-прессование (рис. . б). Ниже эти методы обсуждаются более подробно. [c.10] Деформация кручением под высоким давлением. Установки, в которых деформация кручением была проведена под высоким давлением, впервые были использованы в работах [20, 21]. Их конструкция является развитием известной идеи наковальни Бриджмена [22]. В первых работах эти установки были использованы для исследования фазовых превращений в условиях интенсивных деформаций [20], а также изучения эволюции структуры и изменения температуры рекристаллизации после больших деформаций [23]. Новым и принципиально важным моментом явились доказательства формирования наноструктур с неравновесными большеугловыми границами зерен при использовании интенсивной деформации кручением [3, 8, 12], что позволило рассматривать этот метод как новый способ получения наноструктурных материалов. [c.10] Рассмотрим вначале механические аспекты интенсивной деформации кручением. При деформации кручением под высоким давлением (рис. 1.1а) полученные образцы имеют форму дисков. [c.10] Данная формула аналогична соотношению, используемому при расчетах истинной степени деформации образцов, подвергнутых растяжению. Однако если в случае растяжения эта формула имеет физическое обоснование, то оно отсутствует в случае кручения. В частности, согласно этому соотношению, при кручении под давлением логарифмическая степень деформации по периметру типичных образцов диаметром 20 мм и толщиной 1 мм составляет 6, а по периметру образцов диаметром 10 мм и толщиной 0,2 мм— 7. В то же время в центре этих образцов она равна нулю. Между тем, как показывают результаты многочисленных исследований, в ходе реализации данной схемы ИПД в центральной части образцов после нескольких оборотов структура также измельчается и является обычно однородной по радиусу образцов. Это подтверждается и результатами обнаружения близких значений микротвердости в различных точках как в центре, так и на периферии деформированных образцов. [c.11] Относительно уравнения (1.2) справедливы два замечания [24] 1) расчеты с помощью данного уравнения приводят к выводу о том, что величина деформации должна изменяться линейно от нуля в центре образца до максимального значения на концах его диаметра, однако на самом деле это, как отмечалось выше, экспериментально часто не наблюдается 2) в процессе деформации исходная толщина образца под воздействием высокого сжимающего давления уменьшается примерно в 2 раза, поэтому использование, как это обычно делается, в качестве I исходной толщины образца занижает рассчитанные значения величины деформации по сравнению с истинными значениями. [c.12] Оба этих замечания свидетельствуют, что величины деформации, рассчитанные с помощью указанных выще уравнений, лишь примерно равны реальным степеням деформации. Более того, формирование наноструктуры при ИПД происходит под действием не только внешних, но и внутренних напряжений (см. 1.2). Вместе с тем, между величиной последних и истинными деформациями нет жесткой связи. Подтверждением этого является формирование обычно однородной структуры по диаметру образцов, подвергнутых ИПД кручением, хотя в соответствии с выражениями (1.1) и (1.2) в центре образцов не должно происходить существенного измельчения микроструктуры. В связи с этим при исследовании процессов эволюции микроструктуры в ходе ИПД кручением часто более правильно рассматривать число оборотов, а не величину деформации, рассчитанную с помощью аналитических выражений. Это положение становится особенно важным при обработке труднодеформируемых или хрупких материалов, где возможно проскальзывание между бойками и образцом или растрескивание последнего. Для их устранения необходимо повышение приложенного давления, но это создает дополнительные технологические трудности в подборе более прочного материала бойков, оптимизации конструкции оснастки. [c.12] Полученные ИПД кручением образцы имеют форму обычных дисков размером от 10 до 20 мм и толщиной 0,2-0,5 мм. Существенное измельчение структуры наблюдается уже после деформирования на пол-оборота [24], но для создания однородной наноструктуры требуется, как правило, деформация в несколько оборотов. [c.12] В качестве иллюстрации приведем пример компактирования ИПД кручением полученного в шаровой мельнице наноструктурного порошка Ni[26]. Проведенные исследования показали, что плотность полученных образцов близка к 95% от теоретической плотности массивного крупнокристаллического Ni. При этом в образцах отсутствовала видимая в просвечивающем электронном микроскопе пористость и был очень малый средний размер зерен, равный примерно 17 нм, а, следовательно, границы зерен занимали относительно большой объем. Авторы предполагают, что данные образцы демонстрируют снижение теоретической плотности в связи с тем, что границы зерен в материалах с очень малым размером зерен и сильными искажениями кристаллической решетки обладают пониженной атомной плотностью (см. также гл. 2). [c.13] Примечательным является также тот факт, что микротвердость образцов Ni, полученных методом консолидации ИПД, составила 8,60 0,17 ГПа. Данное значение является самым высоким значением микротвердости, упоминавшимся в литературе для нано-кристаллического Ni. [c.13] Здесь Р — приложенное давление, Y — напряжение течения деформируемого материала. [c.14] Из последнего соотношения следует, что при наиболее часто используемых углах р = 90° и ф = 20° каждый проход соответствует добавочной степени деформации, примерно равной 1. [c.15] В процессе РКУ-прессования для структурообразования весьма важными являются направление и число проходов заготовки через каналы. В работах [32,33, 40-46] были рассмотрены различные маршруты заготовок (рис. 1.3) ориентация заготовки остается неизменной при каждом проходе (маршрут А)] после каждого прохода заготовка поворачивается вокруг своей продольной оси на угол 90° (маршрут В) после каждого прохода заготовка поворачивается вокруг своей продольной оси на угол 180° (маршрут С). [c.15] Данные маршруты различаются направлениями сдвига при повторных проходах заготовки через пересекающиеся каналы и приводят к формоизменению сферической ячейки в теле заготовки в ходе РЕУ прессования. [c.15] В ходе первого прохода в результате простого сдвига при РКУ-прессовании в месте пересечения каналов ячейка приобретает форму эллипсоида (рис. 1.4а). [c.15] Повторный проход при маршруте В приводит к изменению направления сдвига при этом плоскость сдвига поворачивается на угол 120° (при 2(р = 90°) (рис. 1.56) [43]. [c.15] Использование всех трех маршрутов приводит к быстрому росту пределов текучести и прочности обрабатываемого материала, которые уже после нескольких проходов достигают насыщения [39]. [c.16] Схема всесторонней ковки (рис. 1.6) основана на использовании многократного повторения операций свободной ковки осадка-протяжка со сменой оси прилагаемого деформирующего усилия. Однородность деформации в данной технологической схеме по сравнению с РКУ-прессованием или кручением ниже. Однако данный способ позволяет получать наноструктурное состояние в достаточно хрупких материалах, поскольку обработку начинают с повышенных температур и обеспечиваются небольшие удельные нагрузки на инструмент. Например, выбор соответствующих тем-пературно-скоростных условий деформации позволил добиться получения очень мелких зерен размером около 100 нм. [c.17] Вернуться к основной статье