ПОИСК Статьи Чертежи Таблицы Оценка достоверности показателей регрессии из "Биометрия " Критерий ф=0,024/0.008=3,0. Эта величина превосходит критическую точку 5 = 2,88, для =20—2 и а= 1 %, что дает основание для непринятия нулевой гипотезы. [c.299] Сначала найдем остаточную дисперсию признака У. Она равна 5у =4,04]/1 — 0,39Р(726/725)=3,72. Затем требуется найти нормированные отклонения для середин классовых интервалов по признаку X. Эти значения приведены в табл. 135. После этого для каждого классового интервала находим квадратическую ошибку SyJ , на основании которой легко рассчитываются границы доверительного интервала. [c.302] Решая такую задачу, следует иметь в виду, что использование уравнений линейной регрессии допустимо лишь в тех случаях, когда исходные данные распределяются нормально или же их распределение не очень сильно отклоняется от нормальной кривой. Если же генеральная совокупность, из которой извлечена выборка, распределяется по другому закону, применять уравнение линейной регрессии к нормативным оценкам варьирующих объектов нельзя. В таких случаях более подходящими будут иепараметрические оценки, в частности перцентильные, о которых шла речь выше. [c.303] Вернуться к основной статье