ПОИСК Статьи Чертежи Таблицы Методологическая характеристика из "Математические основания статистической механики " Таким образом, путь статистической механики состоит в том, чтобы из общих законов механики вывести особые свойства таких многомолекулярных систем и показать, что при надлежащей физической интерпретации важнейших возникающих в процессе построения этой теории величин выведенные особые свойства, будучи физически интерпретированы, и дают как раз основные физические (в частности, термодинамические) законы, управляющие веществом и его специальными видами. Математическим методом, позволяющим осуществить эту программу, должен служить, по причинам, которые мы изложили в 1, метод теории вероятностей. [c.9] Сделаем теперь несколько замечаний, связанных с описанной целевой установкой статистической механики. [c.9] что придает особые, специфические черты системам, изучаемым статистической механикой, это вовсе не тривиальный факт подчиненности этих систем общим законам механики этим законам, как уже сказано, подчиняется всякое пространственное перемещение материи и эту подчиненность с системами статистической механики разделяют в одинаковой мере и любые другие механические системы, не имеющие вовсе к ней отношения. Специфика систем, изучаемых статистической механикой, состоит, главным образом, в том огромном числе степеней свободы, которыми располагают эти системы. Методологически это означает, что позиция статистической механики определяется не механической природой, атомистическим строением материи дело обстоит почти так, что статистическая механика ставит своей целью проследить, как далеко идут выводы, которые могут быть сделаны из представления об атомистическом строении материи, какова бы ни была природа этих атомов и каковы бы ни были законы их взаимодействия мы видим, что эта тенденция наилучшим образом гармонирует с основными физическими установками диалектического материализма как они выражены, например, с особой яркостью в книге В. И. Ленина Материализм и эмпириокритицизм . [c.9] таким образом, сказать, что уже общая динамика, служащая механической базой статистической механики, является учением, в значительной мере пронизанным идеями теории вероятностей и с успехом пользующимся ее методами и заимствованными у нее аналогиями. [c.10] Что же касается самой статистической механики, то она представляет собой такое учение, вероятностный характер которого сказывается в двух совершенно различных и полностью независимых друг от друга его чертах в общей динамике как его механической базе и в постулате о большом числе степеней свободы, открывающем возможность самого широкого применения методов теории вероятностей. [c.10] Как уже было упомянуто, в большинстве изложений эти асимптотические формулы вводятся без всякого обоснования установив их для какого-либо особенно простого частного случая (например, для однородного одноатомного идеального газа), авторы обычно затем распространяют их с соответствующими изменениями на общий случай либо без всяких оговорок, либо приведя несколько аргументов эвристического характера. Едва ли не единственным исключением из этого общего правила является курс Фаулера. Дарвин и Фаулер, как мы уже упоминали, развивают для математического обоснования созданного ими метода получения асимптотических формул специальный, и притом весьма громоздкий, аналитический аппарат. Они нигде не пользуются результатами теории вероятностей в готовом виде вместо этого они строят новое логическое здание но фактически они все время движутся параллельно тому аналитическому пути, на котором теория вероятностей создает свои предельные теоремы. Отсюда остается только один шаг до создания метода, который нам представляется здесь наиболее целесообразным вместо того, чтобы в усложненной редакции повторять весь тот длинный аналитический процесс, который приводит к предельным теоремам теории вероятностей, — найти сразу тот мост, который соединяет между собой эти два круга проблем найти ту формулу перехода, которая прямо и целиком редуцировала бы всю асимптотическую проблематику статистической механики к предельным задачам теории вероятностей, в большинстве случаев уже решенным, или по меньшей мере таким, для решения которых у нас имеются в распоряжении готовые, многократно испытанные методы. Именно этим путем мы пойдем в предлагаемой книге. Мы считаем, что таким образом сразу достигаются две цели со стороны принципиально-методологической с полной ясностью вскрываются роль и способы применения вероятностей в статистической механике со стороны же формально-вычислительной статистическая механика впервые получает возможность полной математической строгостью обосновать свои асимптотические формулы, не создавая для этого никакого специального аналитического аппарата, а пользуясь готовыми результатами теории вероятностей. Чтобы подчеркнуть оба момента с возможной отчетливостью, мы в тексте приводим формулировки нужных нам предельных теорем теории вероятностей без доказательства, выделяя последнее в особое приложение в конце книги. Мы надеемся, что в таком изложении математическое обоснование статистической механики окажется доступным и многим из тех читателей, которых построения Фаулера отпугивают своей формальной громоздкостью. [c.11] Вернуться к основной статье