ПОИСК Статьи Чертежи Таблицы Исторический обзор из "Вычислительная гидродинамика " Наконец, следует отметить, что численный эксперимент ограничен в том же смысле, что и физический, а именно дает дискретную информацию для некоторой частной комбинации параметров. Он не может установить какие-либо функциональные зависимости, помимо тех, которые получаются из основных уравнений при помощи анализа размерностей, и следовательно, не заменяет даже простейшей теории. [c.16] вычислительная гидродинамика является отдельной дисциплиной, отличной от экспериментальной и теоретической гидродинамики и дополняющей их. Она имеет свои собственные методы, свои собственные трудности и свою собственную сферу приложения, открывая новые перспективы для изучения физических процессов. [c.16] В итерационном методе Ричардсона для эллиптических уравнений на п-й итерации поочередно в каждом узле расчетной сетки удовлетворяется конечно-разностное уравнение, содержащее старые значения на (п — 1)-й итерации в соседних узлах. В 1918 г. Либман показал, что можно значительно увеличить скорость сходимости просто за счет использования новых значений в узлах, как только они вычислены. В этой схеме непрерывных замещений на каждой -й итерации используется некоторое число старых значений с (п — 1)-й итерации и некоторое число новых значений с -й итерации в соседних узлах. В каждом цикле итерационного метода Либмана наибольшие погрешности уменьшаются так же, как в двух циклах итерационного метода Ричардсона (Франкел [1950]). [c.17] Мы должны благодарить судьбу за то, что с 1910 г. социальные условия изменились. Многие из современных вычислителей-гидродинамиков окончили бы свои дни в богадельне, если бы они получали определенную плату за один расчет и при этом ошибочные расчеты не оплачивались . [c.17] НОЙ катастрофе. Классическим историческим примером здесь является явная схема Ричардсона для параболического уравнения теплопроводности, в которой использовались конечно-разностные аппроксимации производных центральными разностями как по пространственным переменным, так и по времени. О Брайен с соавторами [1950] показал, что эта схема безусловно неустойчива ). [c.18] До появления ЭВМ основное внимание уделялось эллиптическим уравнениям. Первое строгое математическое доказательство сходимости и оценку погрешности итерационного метода Либмана для решения эллиптических уравнений дали Филлипс и Винер [1923]. В 1928 г. появилась классическая работа Куранта, Фридрихса и Леви. Эти авторы в основном интересовались использованием конечно-разностных методов как инструмента для исследований в чистой математике. Дискретизируя дифференциальные уравнения, доказывая сходимость дискретной системы к дифференциальной и, наконец, устанавливая существование решения дискретной системы алгебраическими методами, они доказывали теоремы существования и единственности для эллиптических, гиперболических и параболических систем дифференциальных уравнений 2). Эта работа определила направление практического получения конечно-разностных решений в последующие годы. [c.18] Метод Саусвелла не так просто приспособить к использованию на ЭВМ. Вычислитель вручную просматривал матрицу в поисках максимальной невязки гораздо быстрее, чем производил арифметические операции. Для ЭВМ скорость просмотра матрицы не намного превышает скорость выполнения арифметических операций, и поэтому здесь становится более эффективным проведение релаксации последовательно во всех узлах сетки до сведения невязки к нулю, что идентично методу Либмана. [c.19] Таким образом, применение ЭВМ дало основание к дальнейшему развитию методов типа метода Либмана с использованием преимуществ идеи верхней релаксации Саусвелла. В 1950 г. Франкел (и в 1954 г. независимо от него Янг) разработал метод, который он назвал экстраполированным методом Либмана и который впоследствии стал называться методом последовательной верхней релаксации (Янг [1954]) или методом оптимальной верхней релаксации. Франкел подметил также аналогию между итеративным решением эллиптических уравнений и решением шагами по времени параболических уравнений, что имело важные последствия. [c.19] Невозможно точно определить, когда впервые была выдвинута идея асимптотического метода установления по времени, при которой для получения стационарного решения интегрируются уравнения нестационарного течения. Сомнительно, чтобы такая идея могла серьезно рассматриваться до появления ЭВМ. [c.20] Многие из пионерских работ в области вычислительной гидродинамики были выполнены в Лос-Аламосской лаборатории. Именно в Лос-Аламосе во время второй мировой войны фон Нейман разработал свой критерий устойчивости параболических конечно-разностных уравнений и дал метод исследования линеаризованной системы. Краткий отчет о его работах появился в открытой литературе лишь в 1950 г. (Чарни с соавторами [1950] )). В этой важной статье были впервые приведены расчеты метеорологических задач большого масштаба, в которых рассматривались нелинейные уравнения для вихря. Авторы выяснили, что в смысле устойчивости уравнения для вихря имеют преимущество над традиционными уравнениями для простейших физических переменных (скорость и давление), и привели эвристические обоснования своей трактовки нестационарной задачи как задачи с математически неполными условиями на входной и выходной границах. [c.20] В середине пятидесятых годов в работах Писмена и Рак-форда [1955], а также Дугласа и Ракфорда [1956] были предложены эффективные неявные методы для решения параболических уравнений, пригодные при произвольно больших шагах по времени. Под названием неявных схем метода чередующихся направлений 2) они применялись и для решения эллиптических задач с использованием аналогии Франкела [1950] между продвижением решения по времени в параболических задачах и продвижением решения по итерациям в эллиптических задачах. [c.20] Неявные схемы чередующихся направлений, вероятно, наиболее популярны при расчетах задач о течениях несжимаемой жидкости, в которых используется уравнение переноса вихря. [c.21] В 1953 г. Дюфорт и Франкел опубликовали свою схему чехарда для параболических уравнений, которая, как и неявные схемы метода чередующихся направлений, пригодна для произвольно больших шагов по времени (при отсутствии конвективных членов), но сохраняет все преимущества чисто явных схем. Эта схема использована Харлоу и Фроммом [1963] при получении их широко известного численного решения для нестационарной вихревой дорожки. [c.21] Вычислительная устойчивость всех упомянутых выше зависящих от времени решений была ограничена сверху по числу Рейнольдса (принципиально этот предел определяется сеточным числом Рейнольдса, т. е. числом, полученным по размеру шага ячейки конечно-разностной сетки). В 1966 г. Томан и Шевчик добились, по-видимому, неограниченной вычислительной устойчивости, используя для представления конвективных членов разности против потока и уделяя особое внимание граничным условиям. Их расчеты обтекания цилиндра простирались до чисел Рейнольдса, равных миллиону они даже могли вращать цилиндр и получать магнусову подъемную силу, не сталкиваясь при этом с вычислительной неустойчивостью. Несмотря на то что их схема имела лишь первый порядок точности, согласование полученных ими результатов с экспериментальпыми данными заставило переоценить важность формального порядка ошибок аппроксимации при разностном представлении дифференциальных уравнений в частных производных. В этой связи представляется важной работа Чена [1968], установившая существенное влияние численной постановки граничных условий. [c.21] Описанные выше методы пригодны для расчета дозвуковых течений сжимаемой жидкости. Сверхзвуковые задачи отличаются от дозвуковых в нескольких важных аспектах, важнейшим из которых является возможность возникновения в сверхзвуковом течении ударных волн (т. е. разрывов в решениях). [c.22] Основополагающей работой для численного расчета гиперболических уравнений явилась статья Куранта, Фридрихса и Леви, опубликованная в 1928 г. Здесь обсуждались характеристические свойства уравнений и в общих чертах излагался известный метод характеристик. В этой работе было также получено и объяснено знаменитое необходимое условие устойчивости Куранта — Фридрихса — Леви, гласящее, что при расчетной сетке, не совпадающей с характеристической, область зависимости разностных уравнений должна по крайней мере включать в себя область зависимости дифференциальных уравнений. Это условие устойчивости КФЛ (которое в современной терминологии просто гласит, что число Куранта должно быть меньше единицы) справедливо для уравнений гидродинамики как в лагранжевых, так и в эйлеровых переменных. [c.22] Лагранжевы методы, в которых прослеживаются частицы , были доведены до высокой степени совершенства в Лос-Аламосской лаборатории (Фромм [1961]). Вообще говоря, для двумерных задач эйлеровы методы предпочтительнее, однако при их использовании затрудняется расчет ударных волн. Если размер ячейки сетки не меньше, чем толщина ударной волны, то появляются осцилляции, снижающие точность. Эти осцилляции на дискретной сетке имеют физический смысл (Рихтмайер [1957]). Кинетическая энергия, высвобождающаяся из-за потери скорости при переходе через ударную волну, превращается во внутреннюю энергию случайных соударений молекз л при расчетах роль молекул играют ячейки конечно-разностной сетки. [c.22] Наиболее обычным подходом к расчету ударных волн на эйлеровой сетке является размазывание скачка на несколько ячеек сетки путем явного или неявного введения искусственной вязкости, не оказывающей влияния на решение на некотором расстоянии от ударных волн. В 1950 г. фон Нейман и Рихтмайер предложили схему искусственной вязкости, в которой коэффициент вязкости был пропорционален квадрату градиента скорости. Ладфорд, Полячек и Зегер [1953] просто брали большие значения физической вязкости в уравнениях течения вязкой жидкости на лагранжевой сетке, однако в их методе требова-лись нереально высокие значения вязкости. [c.22] Вернуться к основной статье