ПОИСК Статьи Чертежи Таблицы Влияние асимметрии цикла на стадийность процессов разрушения при регулярном и нерегулярном одноосном нагружении из "Безопасное усталостное разрушение элементов авиаконструкций " Распространение усталостных трещин реализуется одновременно во всех зонах вдоль ее фронта, которые в средней части фронта и у его цзаниц наиболее принципиально отличны друг от друга по напряженному состоянию материала, как это было показано в главе 3. Влияние внешних параметров воздействия на рост трещин по этой причине различается в этих зонах разрушаемого материала. Одна из зон прилегает к поверхности, где разрущение материала происходит в условиях сочетания продольного сдвига и отрыва (III+ 1), а другая находится в срединной части материала, где при разрущении доминирует нормальное раскрытие берегов трещины. [c.285] У поверхности сдвиговый процесс формирования скосов от пластической деформации под дет -ствием мод III+I раскрытия берегов трещины остается неизменным как на стадии стабильного роста трещины, так и на этапе ее быстрого роста в образце или элементе конструкции. Смена механизма разрушения у поверхности не происходит, а наблюдаемые изменения в кинетике усталостной трещины по поверхности образца или детали отражают смену механизмов разрушения в срединной части фронта трещины. Поэтому изучение эффектов влияния параметров цикла нафужения на развитие усталостных трещин связано с сопоставлением наблюдаемой реакции материала на внешнее воздействие на поверхности образца и сопоставлением этой реакции с процессами в срединной части материала, где по изменениям величин параметров рельефа излома можно следить за кинетикой усталостного процесса. [c.285] Таким образом, следует различать реакцию материала на внешнее воздействие в разных зонах вдоль фронта трещины и не отождествлять подходы к анализу эффектов, определяющих развитие усталостных трещин в срединных слоях материала, где реализуется максимальное стеснение пластической деформации, и у поверхности, где имеет место свободное течение материала вдоль фронта трещины. [c.285] Соотношение (6.1) учитывает независимое влияние асимметрии цикла R и двухосного нагружения на рост трещин, а также синергетический эффект взаимного влияния этих параметров через введение дополнительной поправки /(й, Х. ). Дополнительная поправка равна нулю, если взаимным влиянием параметров можно пренебречь в описании кинетики усталостных трещин. [c.286] Предельное состояние материала с распространяющейся в нем усталостной трещиной первоначально достигается в середине ее фронта, где стеснение пластической деформации максимально. Происходит статическое проскальзывание трещины, а затем оно реализуется уже по всему фронту, в том числе и у поверхности образца или детали. Предельное состояние отвечает началу нестабильности развития разрушения, что отражает переход через точку бифуркации, когда материал имеет высокую неустойчивость по отношению к параметрам цикла нагружения. Небольшие флуктуации в условиях нагружения порождают дискретный переход к быстрому разрушению при разном размере трещины от образца к образцу, что отражает рассеивание предельной величины КИН для этапа стабильного роста трещины. Эго также отражается в колебаниях выявляемой предельной величины шага усталостных бороздок или скорости роста трещины в момент перехода к нестабильности. [c.287] Последовательное возрастание асимметрии цикла нагружения не нарушает последовательности смены механизмов разрушения, поскольку указанная смена, согласно принципам синергетики, является свойством открытой системы. Внешние условия нагружения влияют только на диапазон, в пределах которого ведущий механизм эволюции открытой системы остается неизменным. Более того, возможно создание таких внешних условий, когда один из механизмов разрушения вообще не может быть реализован при неизменных параметрах цикла нагружения. Рассматривая влияние асимметрии цикла на рост трещин, следует ввести условие сохранения неизменным ведущего механизма разрушения в срединных слоях материала вплоть до наступления нестабильности. Таким условием является достижение некоторой пороговой величины асимметрии цикла (Rth)ps-При условии Ri (Rth)ps смена механизма роста трещины не происходит ни в срединной части образца, ни у поверхности вплоть до наступления нестабильного разрушения. При меньшей асимметрии цикла, чем введенная пороговая величина, в срединной части образца или детали могут быть последовательно реализованы в большей или меньшей мере все механизмы роста трещины, присущие данному материалу. [c.287] Обобщение результатов испытаний показало, что с возрастанием асимметрии цикла нагружения переход к нестабильному разрушению начинается при уменьшающейся величине шага усталостных бороздок (рис. 6.2). Достижение асимметрии цикла около 0,8 приводит к снижению предельного шага усталостных бороздок до величины около 10 м, когда происходит переход к нестабильному росту трещины. Возрастание асимметрии цикла сопровождается сначала снижением шага усталостных бороздок при прочих равных условиях, а затем они перестают формироваться в сплавах АВТ, Д1Т, В95 уже при асимметрии 0,8. В сплавах Д16Т и АК6 при этой асимметрии цикла нагружения шаг усталостных бороздок имел максимальную величину 8-10 м. [c.288] В высокопрочных сталях может наблюдаться эффект влияния асимметрии цикла нагружения на развитие трещины со скоростями, отвечающими припороговой области, когда скорость роста трещины менее 2 10 м/цикл. Это связано с различным влиянием процессов пластической деформации на закрытие трещины, а также с образованием окислов при низком раскрытии берегов трещины, межзеренным ростом трещины, искривлением фронта трещины и др. [7-13]. [c.289] Нерегулярное нагружение путем уменьшения максимального напряжения цикла по мере увеличения длины трешины также позволяет поддерживать механизм разрушения материала в пределах первой стадии кинетической диаграммы. Для алюминиевых сплавов эта ситуация наблюдается, если развитие трещины реализуется при размахе КИН менее 7 МПа-м / . Применительно к сплавам алюминия при пульсирующем (отнулевом) цикле нагружения достижение меньшей величины размаха КИН означает поддержание процесса роста трещины в пределах области, где не формируются усталостные бороздки. [c.290] Сравнение экспериментальных данных, полученных в результате раскрытия трещины фракто-графически (в середине фронта трещины) и анализ параметров петли гистерезиса, регистрирующей деформацию материала у верщины трещины на поверхности образца, показали, что раскрытие трещины в середине ее фронта и у поверхности различно [20]. Этот факт еще раз подтверждает, что закономерности роста трещин в срединных слоях образца или детали и у поверхности различны. Поэтому влияние параметров цикла нагружения на рост трещины в разных зонах вдоль фронта трещины также различно. Раскрытие трещины в срединных слоях существенно зависит не только от соотношения напряжений предыдущего и последующего циклов нагружения. [c.291] Последовательное снижение минимального напряжения цикла связано с переходом через ноль. Сравнение процесса формирования усталостных бороздок в случае сохранения постоянного максимального напряжения цикла при чередовании пульсирующих циклов и циклов с отрицательной асимметрией позволяет проследить роль сжимающей части цикла нагружения в кинетике трещин [6]. Испытания прямоугольных образцов толщиной 10 мм с центральным отверстием из алюминиевых сплавов Д16Т и В95 путем растяжения с чередованием циклов отрицательной асимметрии и пульсирующих циклов при сохранении неизменным максимального напряжения цикла показали, что шаг усталостных бороздок при переходе к отрицательной асимметрии цикла возрастает и мало отличается для обоих сплавов (рис. 6.5). С увеличением асимметрии цикла наблюдалось возрастание различий соседних шагов усталостных бороздок для пульсирующего и асимметричного цикла независимо от уровня максимального напряжения цикла (табл. 6.1). В направлении распространения трещины происходило снижение расхождений между шагом усталостных бороздок для разной асимметрии цикла при разном уровне минимального напряжения так же, как при возрастании шага бороздок, что нашло свое отражение в полученных поверхностях поправочных функций на отрицательную асимметрию цикла нагружения (рис. 6.6). Наиболее заметным влияние отрицательной асимметрии цикла было получено для сплава В95. При возрастании КИН имеет место снижение влияния отрицательной асимметрии цикла нагружения на скорость роста трещины, характеризуемую шагом усталостных бороздок, в пределах 10 %. Это означает, что в направлении роста трещины при разном уровне асимметрии цикла нагружения необходимо иметь не только поправку на асимметрию цикла, но и на возрастающую величину КИН. [c.291] В жаропрочных сплавах в области малоцикловой усталости, когда предельное состояние достигается в условиях отрицательной асимметрии цикла, имеет место возрастание СРТ по сравнению с развитием трещины при отнулевом (пульсирующем) цикле нагружения [22]. С возрастанием уровня напряжения влияние отрицательной асимметрии цикла становится существенней и СРТ значительно возрастает. Сопоставление последовательно снижаемого уровня напряжения на СРТ показало, что при достижении уровня напряжения 500 МПа отрицательная асимметрия цикла и пульсирующий цикл нагружения оказывают эквивалентное воздействие на рост трещины. Это связано с тем, что локальная асимметрия цикла нагружения, определяемая протеканием процесса пластической деформации перед вершиной концентратора напряжений, оказывается недостаточной для заметного влияния на процесс разрушения. Следовательно, определение закрытия вершины трещины в разных зонах вдоль фронта трещины при отрицательной асимметрии цикла должно быть осуществлено в зависимости от размера зоны пластической деформации. Для длинных трещин с возрастанием размера указанной зоны по длине трещины имеет место ослабление влияния отрицательной асимметрии цикла на СРТ. В области малоцикловой усталости ослабление роли отрицательной асимметрии цикла на рост малых трещин в пределах нескольких миллиметров от вершины концентратора напряжений происходит по мере снижения размеров формируемой перед ним зоны. [c.294] Асимметрия цикла нагружения оказывает влияние не только на величину шага усталостных бороздок, но и на высоту усталостной бороздки [23]. Это позволило предложить методику определения асимметрии цикла нагружения по соотношению между высотой и шагом усталостных бороздок. Испытания были выполнены на компактных образцах, изготовленных по стандарту ASTM Е-399 из алюминиевого сплава 2024-Т4 толщиной 15 мм. Одновременно с этим определялось раскрытие трещины по поверхности образца во всем диапазоне изменения асимметрии цикла от минус 1 до 0,8. При максимальной асимметрии цикла усталостные бороздки достигали 3 10 . [c.294] Вместе с тем выполненные в последуюшем измерения высоты и шага усталостных бороздок в туннельном микроскопе показали, что соотношение между высотой и шагом (шириной) усталостной бороздки не зависит от асимметрии цикла нагружения [24]. Из этого следует, что формирование усталостных бороздок отвечает единому механизму разрушения материала в определенном диапазоне интенсивности напряженного состояния материала независимо от способа реализованного внешнего циклического воздействия. Несоответствие результатов исследований двух указанных работ [23] и [24] должно быть отнесено за счет методических особенностей приготовления шлифов для определения профиля усталостных бороздок в работе [23]. [c.295] Существование зависимости процесса роста трещины одновременно от двух параметров цикла нагружения в виде размаха и максимальной величины КИН подтверждается анализом условий зарождения усталостной трещины с точки зрения анализа комбинации пороговых величин (Ki)th и (AKi)tfi [26, 27, 28]. В зависимости от асимметрии цикла нагружения у всех материалов имеет место гиперболическая зависимость между пороговыми КИН в связи с изменением асимметрии цикла нагружения (рис. 6.9). Существует пять классов материалов по чувствительности размаха КИН к положительной асимметрии цикла. Первый класс характеризуют материалы, у которых пороговый размах КИН не зависит от асимметрии цикла в интервале О i 1. Материалы со второго по четвертый класс имеют снижение размаха КИН до достижения некоторой пороговой величины асимметрии цикла. Далее достигнутая пороговая величина КИН (ДК ) остается неизменной. К пятому классу относятся материалы, у которых пороговый КИН возрастает при увеличении асимметрии цикла нагружения. [c.296] Последовавшие многочисленные эксперименты на других типах титановых сплавов, в том числе при сравнении поведения материала в вакууме и коррозионной среде, подтвердили рассмотренную закономерность поведения материалов при снижении размаха КИН в условиях высокой асимметрии цикла нагружения [32, 33]. [c.298] Вернуться к основной статье