ПОИСК Статьи Чертежи Таблицы Растрескивание в растворах галогенидов из "Циклическая и коррозионная прочность титановых сплавов " Растворы, содержащие ионы хлора, брома и иода, являются важнейшими природными (например, морская вода) и многими промышленными средами, поэтому поведение титановых сплавов в этих средах представляет наибольший интерес, тем более, что именно эти среды наиболее опасны для титана в отношении коррозионного растрескивания. Естественно поэтому, что коррозионное растрескивание титановых сплавов в галогенидах наиболее изучено. [c.33] Рассмотрим основные факторы, определяющие чувствительность и склонность к коррозионному растрескиванию титановых сплавов в водных растворах галогенидов, природу этого явления и практические меры борьбы с ним. [c.34] На коррозионное растрескивание титановых сплавов в водных растворах галогенидов существенное влияние оказывает потенциал (поляризация). В общем случае зависимость средней скорости роста трещины от потенциала в растворах, содержащих ионы хлора, брома или иода, примерно линейна, а другие факторы (состав и термообработка сплавов, pH раствора, размер зерна, текстура и др.) влияют на эту зависимость (рис. 24), усиливая или ослабляя ее. [c.35] На рис. 25 приведена зависимость времени до разрушения сплавов АТ6 и АТЗ от потенциала при испытании в 3 %-ном растворе N301 с различной интенсивностью напряжения [ 26]. Видно, что эффективность поляризации зависит также лт состава и термообработки сплавов. Эффективность анодной защиты титановых сплавов значительно выше, чем катодной. Во-первых, катодная защита оказывается действенной не для всех титановых сплавов, во-вторых, она опасна из-за возможности наво-дороживания сплавов, что ведет к охрупчиванию. [c.36] На коррозионное растрескивание оказывают влияние температура раствора и вязкость среды [30]. Установлено, что с повышением температуры увеличивается скорость роста трещины. По-видимому, это связано с уменьшением растворенного в воде кислорода, а также скорости пассивации титана. Критический коэффициент интенсивности напряжен ний сплава Т — 8 % А1 — 1 % V — 1 % Мо в 3,5 %-ном растворе Na I мало изменяется [ 30]. [c.37] Между логарифмом вязкости и логарифмом скорости распространения трещины выявлена линейная зависимость чем больше вязкость, тем меньше скорость роста трещины. Вязкость раствора изменялась при введении органических веществ. [c.37] Наиболее важными металлургическими факторами, влияющими на чувствительность титановых сплавов к коррозионному растрескиванию, являются химический состай сплава (включая содержание примесей) фазовый состав сплава, зависящий не только от легирования, но и от конечной термообработки и, наконец, макро- и микроструктура сплава, формирующаяся под воздействием термопластической обработки. [c.38] Известно еще многопримеров резкого увеличения склонности к, коррозионному растрескиванию под влиянием повышенного содержания водорода в металле [ 23, 34, 35]. [c.40] Несколько своеобразно коррозионное растрескивание сплавов с мета-стабильной и стабильной /З-структурой. В о.тличие от а- и а + -сплавов, коррозионные трещины в которых, как правило, распространяются интеркристаллитно, -сплавы растрескиваются и по границам зерен. Первоначально причиной коррозионного растрескивания Зюплавов считали выделение интерметаллидов марганца и хрома. Но после создания 3-сплава, легированного только изоморфными -стабилизаторами, оказалось, что и он имеет значительную коррозионную чувствительность. Склонность к коррозионному растрескиванию /3-сплавов очень сильно зависит от структуры и конечной термообработки. Особенно чувствительны к коррозионной среде сварные швы /3-сплавов. Наличие в -сплавах нейтральных упрочнителей, таких как олово и цирконий, усиливает их коррозионную чувствительность. [c.40] Термическая обработка титановых сплавов может очень сильно влиять на склонность к коррозионному растрескиванию, при этом изменяются и и скорость распространения трещины. Важнейшие факторы здесь температура нагрева, время выдержки и особенно скорость охлаждения. Наиболее благоприятная термическая обработка всех титановых сплавов, повышающая их стойкость к коррозионному растрескиванию,—нагрев до температуры, близкой к (а + ) переходу, небольшая выдержка при этих температурах и быстрое охлаждение, при этом решающим фактором режима обработки является скорость охлаждения. Наоборот, длительные отжиги при средних и низких температурах и особенно с медленным охлаждением сильно увеличивают склонность сплавов к коррозионному растрескиванию. Естественно, что влияние термической обработки на сплавы различных классов неодинаково [36]. Сплавы а и псевдо-а-сплавы, если в них не более 6 % алюминия и нормированное содержание газовых примесей (Оа, М, На), ускоренным охлаждением от температур, близких к (о + /3) /3-переходу, можно перевести в разряд практически не чувствительных к растрескиванию в галогенидах. Термическая обработка (а + ) сплавов, легированных -изоморфными элементами, в меньшей степени влияет на их чувствительность к коррозионной среде, чем термообработка а-сплавов. Влияние термообработки на коррозионное растрескивание стабильных /3-сплавов мало изучено, но при этом общие закономерности сохраняются. [c.40] Заметное влияние на склонность к коррозионному растрескиванию оказывают параметры горячей и холодной обработки металла при изготовлении титановых полуфабрикатов. Так, появляющиеся после прокатки листов текстуры приводят к появлению резко выраженной анизотропии чувствительности к коррозионному растрескиванию. При испытании образцов, вырезанных из листа в различных направлениях, значения отличаются на 40—50 %. Наиболее низкие значения наблюдаются, если плоскость растрескивания параллельна преимущественной базисной плоскости текстуры. Склонность к коррозионному растрескиванию снижается с уменьшением толщины образца [37]. Влияние толщины может быть результатом перехода от условий плосконапряженного состояния к условиям плоской деформации, но может быть объяснено и различной текстурованностью металла. [c.41] Как отмечено ранее, склонность к коррозионному растрескиванию гладких образцов некоторых титановых сплавов не проявляется в галогенидах. Однако установлено, что если поверхность сплава (образцов) окислить на воздухе (отжиг при 700°С в течение 10 ч) так, что появится насыщенный кислородом поверхностный слой ( 50 мкм), то растрескивание уже появится в явной форме, как у надрезанных образцов [38]. [c.41] При Оценке коррозионного растрескивания следует помнить о возможном влиянии на получаемые характеристики условий испытания (скорость нагружения, форма и размеры образца и пр.). Поэтому сравнивать различные сплавы или их обработку можно только при полной идентичности условий испытания. [c.41] Никель не входит в число основных элементов, используемых для легирования титановых сплавов. Только в некоторых частных случаях используют его добавки, главным образом в технически чистый титан, например для исключения щелевой коррозии и коррозионного растрескивания труб опреснительных установок. Так, для горячих растворов НаС1 рекомендуется применять сплав Т1 —2,5 % N —2 % 2.x [42]. Сплав Т1—2 % А1 практически не чувствителен к коррозионной среде (3,5 %-ный раствор НаС1) как в отношении щелевой коррозии, так и в отношении коррозионного растрескивания. [c.42] Опасность коррозионного растрескивания титановых сплавов в водных растворах галогенидов возникает при внешней поляризации — 0,5 0,3 В (по хлорсеребряному электроду). Это следует учитывать при конструировании и эксплуатации оборудования. Необходимо также не допускать подкисления растворов в щелях, застойных зонах и других местах особенно на участках повышенной концентрации напряжений, где облегчается возникновение микродефекта и дальнейшее его развитие в виде коррозионной трещины. С целью ингибирования в растер вводят ионы гидроксила или буферных соединений. Другой способ защиты от коррозионного растрескивания—нанесение на поверхность титановых сплавов модифицированной композиции 5А-5, содержащей фтористый кальций, смолу ДС808, алюминиевую пудру, ксилол и катализаторы ХН-6-2163 [43]. [c.42] Наиболее ответственные конструкции необходимо периодически подвергать контролю на наличие трещин. [c.42] Вернуться к основной статье