ПОИСК Статьи Чертежи Таблицы Задачи и дополнительные вопросы из "Термодинамика и статистическая физика Т.2 Изд.2 " И наконец, чисто логический аспект ситуации. Метод Гиббса в равновесной статистической физике представляет собой замкнутый аппарат, полностью укомплектованный в аксиоматическом отношении и однозначно определяющий математическую профамму исследований. Он не содержит бессмысленных расходимостей, об устранении которых надо договариваться по,дороге, и других неприятностей, так характерных для полевых теорий. В него не надо вкладывать заранее придуманных решений для уравнений состояния и корреляционных функций — он сам выдает эти результаты, точно соответствующие рассматриваемой равновесной системе. [c.367] Математика — дело тонкое, и если мы навязываем аналитичвс1 ю структуру ре-шения проблемы в какой-либо локальной области значений аргументов (например, степенную конструкцию для теплоемкости вместо реализуемой на самом деле бу+ кингемской), то для того, кто знаком с теорией функций, становится понятным, что вся исходная схема исследований поставленной математической проблемы ломается (включая исходные уравнения), — угаданное решение удовлетворяет совершенно другой схеме и другим уравнениям. [c.368] Основной материал данной главы посвящен изложению метода корреляционных функций. Он универсален и используется не только в теории равновесных классических систем, но и в квантовой статистике (в соответствующей операторной модификации), и в теории неравновесных систем (см. том 3, гл. 5). При этом мы ограничились исследованием только двух конкретных случаев систем с короткодействием и систем с кулоновским взаимодействием частиц друг с другом. Рассмотрение этих в определенном смысле полярных классов физических систем, с одной стороны, это традиция, а с другой — это и основные задачи теории неидеальных газов. Мы показали в 1 основного текста и в 1 и 2 дополнений, что основные проблемы теории могут быть сведены к определению двухчастичной корреляционной функции з(Д) (или ее модификаций). Это не означает, что в рассматриваемых нами системах существенны только парные корреляции роль трех и более частичных корреляций, которые учитываются в з(Д) как бы интегральным образом, возрастает по мере того, как система становится все более и более неидеальной, и если, например, в случае низкой плотности корреляционная функция з(Д) определяется в основном динамическим взаимодействием частиц, то по мере приближения состояния системы к критической точке все более оказываются связанными с возрастанием роли многочастичных корреляций статистические факторы, отодвигающие динамическое взаимодействие Ф(Д) на второй план. Эта идея неявно была использована при формулировке полуфеноменологической теории корреляционных эффектов в 3. [c.369] Сделаем краткий обзор материала, включенного в раздел задач. Он достаточно разнообразен, и его тематика отражена в заголовках параграфов. Но это в основном не учебные задачи типа упражнений, а именно дополнительные вопросы, оформленные в виде задач из соображений сохранения общей структуры книги. В соответствии с уже сказанным нами ранее раздел, посвященный корреляционным функциям, несколько расширен (по сравнению с профаммными требованиями) помимо равновесных задач в него включены вопросы о связи функции Р2(Н) с флуктуациями плотности, с экспериментами по рассеянию частиц и электромагнитного излучения на статистических системах и т.д., а также обсуждены варианты построения интефальных уравнений для этой функции. Отдельный парафаф посвящен методу Майера. Он сыфал значительную роль в развитии теории неидеальных систем, а выработанные в нем диаграммные представления интегральных конструкций до сих пор являются своеобразным языком теории. Для получения окончательных результатов, которые можно было бы сравнивать с какими-либо измеряемыми на эксперименте величинами, в теорию неидеальных систем, включая, конечно, и метод Майера, необходимо ввести аналитические выражения для реалистических потенциалов взаимодействия, например потенциал Ленарда-Джонса, при этом, естественно, теория кончается и начинаются численные оценки фигурирующих в теории интегралов. Подобные расчеты на бумаге теперь уже не производят, и они не входят в наши задачи. Специальный параграф посвящен одномерной модели газа. Это одна из редких точно решаемых моделей при любом взаимодействии ближайших соседей. Причем это именно та система, для которой при специальном дальнодействующем виде взаимодействия частиц традиционное уравнение состояния Ван дер Ваальса является точным. [c.370] Вернуться к основной статье