ПОИСК Статьи Чертежи Таблицы Энергетический метод Рейсснера и альтернативные функционалы из "Метод конечных элементов Основы " В гибридных методах, основанных на концепции мультиполей в принципах минимума модифицированной потенциальной и дополнительной энергии, внутри элемента используется одно поле, а на границах элемента — другое независимое поле или два независимых поля. Можно, однако, использовать вариационный принцип, которому внутренне присуще понятие мультиполей. При этом подходе соответствующие поля перемещений и напряжений одновременно задаются для всего элемента. [c.194] Применение метода Галеркина из разд. 5.5 к вспомогательным уравнениям упругости, а не к комбинации дифференциальных уравнений (равновесия или совместности) приводит к выражениям с одновременным участием двух полей. Ниже эта же формулировка рассматривается с других позиций, а именно строится функционал, в который входят два поля, и доказывается, что уравнения Эйлера для этого функционала представляют собой соответствующие вспомогательные уравнения теории упругости. Так как вспомогательные уравнения можно записать различными путями, существует несколько функционалов, в которые входят два поля. Здесь рассматривается функционал Рейсснера (П ) [6.16], которому в методе конечных элементов уделяется особое внимание. [c.194] Варьируя выражение (6.81) и интегрируя его по частям, можно показать, что уравнения Эйлера для функционала П представляют собой уравнения равновесия (4.3) и дифференциальные соотношения, связывающие напряжения с перемещениями, т. е. уравнения, получаемые подстановкой соотношений между деформациями и перемещениями (4.7) в уравнения состояния (4.15). Обратное утверждение было доказано в разд. 5.5 методом взвешенных невязок. [c.195] Матрица этого же вида была ранее выписана в разд. 2.3, и аналогичное представление встречалось уже в (5.47). [c.196] В работах [6.4, 6.8, 6.17—6.191 и др. описаны более общие вариационные принципы, из которых вытекают принципы стационарности потенциальной и дополнительной энергии и функционала Рейсснера. Так, к одной из альтернативных формулировок можно прийти, если выразить из (6.80) величину и, подставить ее в (6.68) при одновременном учете граничных условий в виде (6.82). Альтернативные формулировки элементов, вкладываемые в указанные более общие виды функционалов, в той или иной степени использовались в разд. 6.5 и 6.7. [c.198] Вернуться к основной статье