ПОИСК Статьи Чертежи Таблицы Свариваемость сплавов на основе хрома, молибдена и вольфрама из "Сварка и свариваемые материалы Том 1 " С учетом специфики металлов VIA подгруппы и сплавов на их основе под свариваемостью этих материалов следует подразумевать прежде всего возможность получения бездефектных сварных соединений с достаточным уровнем низкотемпературной пластичности. При рассмотрении вопросов, связанных с оценкой свариваемости сплавов, их целесообразно условно разделить на три группы. В первую группу следует отнести проблемы, обусловленные металлургическими и физическими особенностями сплава, которые определяются в основном его химическим составом. Особое внимание следует уделить примесям, образующим с хромом, молибденом и вольфрамом твердые растворы внедрения. [c.416] Ко второй группе вопросов свариваемости тугоплавких металлов относятся структурное состояние основного металла и его взаимосвязь с механическими характеристиками и низкотемпературной пластичностью сварного соединения. При этом необходимо рассматривать не только зеренную структуру, но также механическую и кристаллографическую текстуру исходного материала. [c.416] И наконец, третья группа вопросов связана с технологией сварки. Она включает факторы, в значительной степени влияющие на качество сварных соединений и в первую очередь их температуру хладноломкости способ и режим сварки, состав защитной газовой атмосферы, методы подготовки свариваемых кромок и др. [c.416] Благодаря особым физическим свойствам металлов VIA подгруппы — высокая температура плавления, большая теплопроводность и объемное теплосодержание — при их сварке плавлением требуются повышенные тепловложения и применение концентрированных источников нагрева. [c.416] Основным препятствием получения качественных сварных соединений является наличие примесей в основном металле в количествах, значительно превышающих их предел растворимости. Рост содержания кислорода в молибденовых сплавах приводит к появлению и резкому увеличению температуры вязко-хрупкого перехода сварного соединения (рис. 31.4). [c.417] Так как в молибдене при комнатной температуре растворяется не более 0,0001 % (по массе) Ог, можно утверждать, что практически весь кислород, содержащийся в сплаве, будет сегрегировать на границах зерен в свободном состоянии и в виде оксидов. И в том, и в другом случае пластичность сварных соединений молибденовых сплавов резко снижается чем больше толщина пленки МоОг, тем выше температура хладноломкости соединения. [c.417] Азот оказывает двоякое влияние на пластичность сварных соединений молибденовых сплавов. В сплаве ЦМ6, содержащем в исходном состоянии 0,008 % (по массе) Ог, увеличение содержания азота в металле шва до 0,0288 приводит к некоторому снижению температуры хладноломкости. В сплаве ЦМЮ увеличение содержания азота от 0,0012 до 0,0282 % (по массе) не оказывает заметного влияния на температуру хладноломкости сварного соединения. Следует учесть, что в последнем случае увеличение содержания азота в металле шва сопровождалось возрастанием содержания кислорода. Такое совместное влияние азота и кислорода на пластичность сварных соединений молибденовых сплавов может рассматриваться как следствие весьма тонкого конкурентного взаимодействия этих примесей на границах зерен [2]. [c.418] Сведения, приводимые в литературе, о влиянии углерода на низкотемпературную пластичность молибденовых сплавов противоречивы. В ряде сообщений говорится о положительном влиянии углерода, вводимого в молибден в количествах, даже превышающих необходимое для раскисления. Увеличение пластичности молибденовых сплавов обусловлено нейтрализацией вредного влияния кислорода. Это свидетельствует о том, что улучшение свариваемости сплавов на основе металлов VIA подгруппы достигается оптимальным легированием, способствующим нейтрализации примесей внедрения. [c.418] Сравнительные данные о влиянии азота, кислорода, углерода и серы на температуру вязкохрупкого перехода хрома приведены на рис. 31.5. [c.419] Углерод, сера резко повышают температуру вязко-хрупкого перехода, в то время как кислород оказывает на пластичность хрома наименьшее влияние. Поэтому при разработке низколегированных сплавов хрома, предназначающихся для сварных конструкций, особое внимание уделяют содержанию в металле углерода и серы. Их концентрация в сплаве должна находиться либо на уровне предельной растворимости, либо эти примеси должны быть связаны в термодинамически стабильные соединения, что может быть достигнуто легированием сплава небольшим количеством элементов IVA и VA подгрупп и редкоземельными элементами. [c.419] Таким образом, анализ особенностей изменения свойств сварных соединений в связи с наличием в них примесей внедрения в различных количествах позволяет наметить наиболее эффективные пути улучшения свариваемых металлов VIA подгруппы. К ним относятся, во-первых, очистка исходного материала от элементов, образующих с ним твердые растворы внедрения. Особенно остро эта проблема стоит при производстве сплавов на основе вольфрама и хрома во-вторых, рациональное легирование химически активными элементами с целью связывания примесей в термодинамически стабильные соединения. [c.419] Механические свойства сварных швов на тугоплавких металлах могут быть улучшены, если их легировать элементами, которые наряду с увеличением высокотемпературной прочности и пластичности при нормальной температуре уменьшают размер зерна. К таким элементам относятся А1, Ti, Zr, Hf, Ir, Nb и др. Из этих элементов наиболее эффективными являются Zr, Hf, Ir. [c.419] Сплавы тугоплавких металлов VIA подгруппы, получаемые методами вакуумно-дугового и электронно-лучевого переплава, обладают значительно меньшей склонностью к образованию пористости в сварных соединениях, чем аналогичные сплавы, изготовленные методами порошковой металлургии. Обычно это вызвано тем, что порошковые сплавы имеют повышенное содержание газовых примесей. Однако в сварных соединениях, выполненных на порошковых сплавах даже с меньшим содержанием примесей, чем в литом металле, как правило, наблюдается пористость. Однако имеются факты, свидетельствующие о том, что склонность к образованию трещин в сварных соединениях порошковых сплавах вольфрама значительно ниже, чем в литых сплавах того же химического состава. [c.419] Качество сварных соединений, механические свойства швов, и особенности их низкотемпературная пластичность чрезвычайно чувствительны к структурному состоянию исходного материала [2]. [c.419] При сварке тонколистовых материалов реализуется двухмерная схема кристаллизации сварочной ванны. Кристаллизация начинается с оплавления зерен в зоне сплавления, е. при сварке тонколистовых материалов кристаллизация шва происходит путем эпитаксиального роста его кристаллитов. Кристаллиты металла шва наследуют кристаллографическую ориентировку тех зерен, с оплавленной поверхности которых происходит их рост. [c.420] С увеличением толщины свариваемых металлов возникают серьезные трудности, связанные с перегревом металла шва, увеличением ЗТВ и, как следствие, образованием трещин. Применение способов сварки давлением в ряде случаев позволяет решить многие проблемы сварки хрома, молибдена и вольфрама. [c.420] Весьма удовлетворительной свариваемостью обладают сплавы молибдена и вольфрама при сварке трением. Процесс можно осуществлять на воздухе и в вакууме с получением высоких механических свойств, хотя Тх сварных соединений на 150—200 К выше, чем Тх основного металла. Причиной этого может быть искривление исходного волокна в зоне стыка. Проведение процесса сварки трением в вакууме позволяет снизить давление и величину осадки, что способствует повышению пластичности соединений. [c.420] Вернуться к основной статье