ПОИСК Статьи Чертежи Таблицы ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ТВЕРДОМ СОСТОЯНИИ из "Сварка и свариваемые материалы Том 1 " Диффузионные превращения. Диффузионные превращения происходят по механизму образование и рост новой фазы . Образование зародыша происходит с увеличением свободной энергии системы, равной /з поверхностной энергии зародыша (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается за счет флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах для образования зародыша необходимо также наличие флуктуации концентрации растворенного элем-ента. Это условие затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. При превращении в твердом состоянии образование зародышей также тормозится упругой деформацией фаз. Последняя обусловлена различием удельных объемов исходной и образующихся фаз. Энергия упругой деформации увеличивает свободную энергию подобно поверхностной энергии. [c.106] Среди образовавшихся зародышей способностью к дальнейшему росту обладают зародыши, размер которых равен или превышает критический. В этом случае баланс поверхностной и объемной энергий получает отрицательное значение и рост новой фазы происходит с уменьшением свободной энергии системы. Критический размер зародышей уменьшается с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре То, при которой объемные свободные энергии фаз равны. При этом скорость образования зародышей также будет уменьшаться, так как с понижением температуры снижается диффузионная подвижность атомов, необходимая для формирования зародыша новой фазы. Зависимость вероятности образования новой фазы от степени пере-охлаждени.я будет иметь максимум, при нагреве вероятность будет монотонно возрастать с увеличением степени перегрева. [c.106] При росте новой фазы изменение составляющих свободной энергии- аналогично изменениям при образовании зародышей. Поэтому зависимость линейной скорости роста новой фазы от степени переохлаждения также имеет максимум, но сдвинутый в сторону меньших переохлаждений. Общая скорость фазового превращения определяется суммой скоростей зарождения и роста новой фазы. [c.106] В материаловедческой практике эти диаграммы строятся в координатах температура—время. При этом максимальная температура соответствует нагреву при термообработке (закалке, отжигу), а время отсчитывается от момента начала охлаждения после выдержки при максимальной температуре. В сварочной практике нащли применение диаграммы, преобразованные в вид, удобный для практического использования при выборе теплового режима сварки. Во-первых, нагрев соответствует сварочному термическому циклу с максимальной температурой, близкой к температуре солидуса сплава во-вторых, характер и температура превращений даются в зависимости от скорости охлаждения при сварке. В диаграммах для сталей приняты скорость охлаждения в диапазоне 600—500 °С (t es) или время охлаждения от 800—500 °С (fs/s). Такие диаграммы получили название анизотермических диаграмм распада аустенита при сварке — АРА (рис. 5.6,6) [3]. [c.107] Примером превращения диффузионного типа является перлитное превращение при распаде аустенита при сварке низкоуглеродистых и низколегированных сталей. Одной из характеристик перлитной структуры является окончательный размер колоний (перлитных зерен). Чем меньще размер аустенитных зерен и ниже температура превращения, тем меньще размер перлитных зерен. С уменьщением их размера механические свойства структуры улучшаются. [c.107] Мартеиситные превращения. Мартенситное превращение происходит путем совместного (кооперативного) перемещения многих атомов. Результирующее перемещение сводится к тому, что ряд элементарных ячеек исходной фазы как бы однородно пластически деформируется, переходя в ряд элементарных ячеек новой фазы. Мартенситное превращение называют бездиффузионным или сдвиговым. [c.107] Мартенситное превращение характерно для сплавов, претерпевающих при охлаждении в твердом состоянии после сварки и термообработки полиморфные превращения. Мартенситное превращение имеет место при сварке среднеуглеродистых и легированных сталей на малых погонных энергиях без применения подогрева. Мартеиситная а -фаза образуется при сварке титановых сплавов в широком диапазоне тепловых режимов [4]. [c.109] В зависимости от внутреннего строения различают следующие типы мартенсита в стали пластинчатый и пакетный [5]. Пластинчатый мартенсит также называют игольчатым, низкотемпературным и двойниковым. Он образуется в высокоуглеродистых и среднеуглеродистых легированных сталях. Имеет форму тонких линзообразных пластин с двойниковыми прослойками в средней части. [c.109] Пакетный мартенсит, также называемый реечным, массивным, высокотемпературным и недвойниковым (дислокационным), имеет форму примерно одинаково ориентированных тонких пластин (реек). Они образуют плотный более или менее равноосный пакет. Ширина реек 0,1—1,0 мкм, поэтому оптической металлографией выявляются только их пакеты. По этой причине пакетный мартенсит получил название массивного. Пакетный мартенсит образуется в большинстве низкоуглеродистых легированных сталей. Тип мартенсита определяет его механические и технологические свойства. Например, пластинчатый мартенсит в околошовной зоне более склонен к образованию холодных трещин, чем пакетный. Это связано с тем, что у вершины двойниковой пластины создаются дислокации высокой плотности и высокий уровень микронапряжений. [c.109] При медленном охлаждении и относительно малой степени переохлаждения образуются близкие к равновесию стабильные 0-фазы с некогерентными границами раздела. Для них характерно гетерогенное зарождение на высокоугловых границах зерен и скоплениях вакансий (кластерах). В результате возможно образование сетки выделяющейся фазы на границах зерен. [c.110] Нри ускорении охлаждения и больших степенях переохлаждения вместо стабильной -фазы часто образуется метаста-бильная 0 -фаза, содержащая обычно меньше растворенного компонента, чем в стабильной. 0 -фаза зарождается гетерогенно предпочтительно на малоугловых границах блоков внутри зерен, скоплениях вакансий и отдельных дислокациях. Она имеет полностью или частично когерентные границы раздела. Возникновение метастабильных фаз обусловлено меньшей величиной энергетического барьера при их зарождении, чем стабильных. Кроме того, для возникновения метастабильной фазы требуются меньшие концентрационные флуктуации. При длительной выдержке может произойти переход в в 0, в результате чего будет достигнуто равновесное состояние сплава с минимальной свободной энергией. [c.110] Выделение фаз из закаленных пересыщенных твердых растворов существенно ускоряется при их нагреве. [c.111] Гст (0,5-0,6) Гпл К, где Гпл — температура плавления металла. [c.111] Нагрев свыще Гст приводит к перестариванию. При этом прочностные свойства снижаются, а пластические свойства продолжают слабо снижаться. Последнее вызвано укрупнением (коагуляцией) частиц фаз и уменьшению их числа в единице объема. Другой процесс при перестаривании — переход метастабильных фаз в стабильные и замена когерентных границ раздела некогерентными. [c.111] Старение, вызванное предварительной пластический деформацией, называется статическим деформационным старением. Старение, развивающееся в процессе пластической деформации, называется динамическим. Условием динамического старения является определенное соотношение между скоростями деформации и диффузионным перемещением растворенных атомов. В данном случае происходит блокировка растворенными атомами дислокаций, движение которых при деформировании по каким-либо причинам замедляется, что служит причиной упрочнения. Указанное выше соотношение устанавливается при определенных температурах, например для иизкоуглеродистой стали в диапазоне 250—400 °С. Частичное охрупчивание стали при этих температурах называется синеломкостью. [c.112] Вернуться к основной статье