ПОИСК Статьи Чертежи Таблицы Основные теплотехнические расчеты из "Основы теплоэнергетики (низкое качество) " Законы идеальных газов,Т13учаемые в курсе физики, используются для решения ряда теплотехнических задач. Рассмотрим наиболее часто встречающиеся задачи. [c.14] Газ не имеет собственного объема и вследствие хаотического (теплового) движения молекул занимает объем сосуда, в котором он заключен. В двух одинаковых по объему сосудах могут быть заключены разные количества одного и того же газа в зависимости от давления и температуры таза. Для сравнения двух количеств газа по объемам надо выразить эти количества объемами при одинаковых значениях давления и температуры обычно в качестве таковых принимают нормальные условия . Под нормальными условиями условились понимать нормальное давление / в=101,3 кПа (760 мм рт. ст.) и нормальную температуру 7 н= 273 К ( н=ОХ). [c.14] Уравнение (1-14) называется уравнением Клапейрона, или характеристическим уравнением. [c.14] Уравнением (1-15) следует пользоваться в тех случаях, когда по объему V газа в заданных условиях р и Г нужно определить его массу или, наоборот, по заданной массе М нужно определить ее объем при условиях р и Т. [c.15] Очень удобно в теплотехнических расчетах пользоваться величиной, называемой относительной молекулярной (или атомной) массой, или короче — молекулярной (атомной) массой. Она характеризует массу молекулы (атома) вещества по сравнению с массой атома углерода, которой придано значение 12. Таким образом, молекулярная масса (ее обозначают греческой буквой л)—число безразмерное (отвлеченное). Для каждого газа значение молекулярной массы можно определить, если известны химическая формула газа и значения атомных масс элементов, образующих молекулу. Например, молекулярная масса углекислого газа СОг =1 2 + 2 16 = 44, а молекулярная масса метана СН4 =12 + -Ь4-1 = 16. [c.15] В табл. 1-1 приведены значения атомных масс элементов, наиболее часто используемых в теплотехнических расчетах, а в табл. 1-2 — химические формулы часто используемых газов. [c.15] Вместе с тем, как было указано ранее, удельный объем и плотность газа при условиях, отличных от нормальных, вычисляются по формуле (1-14). Однако для пользования формулами (1-14) и (1-15) надо уметь вычислять газовую постоянную для данного газа. Покажем, как это делается. [c.15] Водород Кислород Окись углерода Азот Аммиак На Сб йь, Углекислый газ Водяной пар Ацетилен Метан Бензол а С,н. [c.15] Слева ii — киломоль ная газовая постоянная. Отсюда заключаем киломольная газовая постоянная одинакова для всех идеальных газе и численно равна 8 314 Дж/(кмоль-К). Таким образом, зная химическую формулу газа и атомные массы элементов, его образую-. щих, можно вычислить ц и по. уравнению (1-19) газовую постоянную на 1 кг для данного газа. [c.16] Вернуться к основной статье