ПОИСК Статьи Чертежи Таблицы Взаимодействие друг с другом волн, имеющих случайно модулированные фазы. Кинетика волн из "Введение в теорию колебаний и волн " В общем случае при взаимодействии квазигармонических волн в слабонелинейных средах изменения амплитуд и фаз волн могут осуществляться на существенно различных характерных временах. Например, мы уже видели, что при взрывной неустойчивости фазы волн быстро синхронизуются, после чего их разность можно считать практически постоянной и на этом фоне рассматривать нелинейную эволюцию амплитуд (см. гл. 17). Как мы не раз убеждались, разделение движении на быстрые и медленные позволяет при исследовании многих явлений продвинуться достаточно далеко без применения численных методов (вспомним метод разрывных колебаний, асимптотические методы, базирующиеся на медленности изменения параметров волн и последующем усреднении, и т. д.). [c.431] Прежде чем мы убедимся в этом, заметим, что подобная ситуация в физике нелинейных волн встречается довольно часто [35-44]. Случайные неоднородности среды, флуктуации ее параметров во времени, действие внешних нерегулярных нолей — вот основные факторы, приводящие к дрейфу собственных частот взаимодействующих волн во времени или пространстве. Такой дрейф возможен и в случае, когда волны, образующие резонансный триплет, участвуют в большом числе других взаимодействий, влияние которых на исходный процесс можно грубо представить себе как действие эффективного внешнего поля. В этом случае приближение хаотических фаз допускает некоторое обоснование, опирающееся на возможность хаотизации индивидуальной ангармонической волны под действием регулярных внешних полей (см. [42] и гл. 22). Конечно, случайные пульсации параметров среды во времени или в пространстве приводят и к флуктуациям амплитуд волн (хотя бы потому, что энергия поля на избранной частоте несколько перераспределяется в пространстве), однако поскольку энергия волн в среднем не меняется, эти перераспределения энергии по волновому пакету должны быть невелики. Изменения же фазы ничем не ограничены. Например, из-за малой флуктуации групповой скорости, приведшей к сдвигу волны лишь на Л/2, фаза уже меняется на тг/2. [c.432] Как видно, равновесный спектр и при произвольном числе троек волн будет характеризоваться равнораспределением энергии по степеням свободы. Уравнение (20.31) имеет решение = Тош (это легко проверить прямой подстановкой с последующим использованием соотношения = Ши -Ь Ши ). [c.435] Уравнения типа (20.31) называют кинетическими уравнениями для волн. Первое слагаемое в круглых скобках описывает процесс слияния квазичастиц с импульсами к и к , т. е. рождение квазичастиц с импульсом к, вторые два — их уничтожение, за счет распада на квазичастицы с импульсами к и к . Впервые такие уравнения были получены Пайерлсом для описания газа фононов — акустических волн в твердом теле (диэлектрике) [41]. [c.435] Здесь спектр волн предполагается непрерывным (ТУк — плотность числа квантов в спектральном интервале от к до к -Ь Дк). Опять прямая подстановка показывает, что равновесному состоянию соответствует спектр Рэлея-Джинса, т. е. равновесное спектральное распределение в ансамбле из большого числа квазичастиц не зависит от характера взаимодействия (столкновений) между ними, в результате которого это равновесие устанавливается. [c.435] Если среда диссипативна, то существование в ней незатухающих волновых движений возможно лишь при условии, что траты волновой энергии компенсируются внешним источником. Во многих случаях (например, при возбуждении гравитационных волн на поверхности воды ветром [36]) энергия вкладывается в систему взаимодействующих волн и затем отбирается от нее за счет диссипации в существенно отдаленных друг от друга в спектральном пространстве областях (рис. 20.11). Поток энергии из области источника в область стока энергии осуществляется через инерционный интервал (спектральную область, где и источники, и стоки энергии отсутствуют) за счет взаимодействия волн различных масштабов друг с другом. Если фазы волн в результате взаимодействия хаотизируются, то такой ансамбль волн со случайными фазами в диссипативной среде, поддерживаемый внешними источниками энергии, называют слабой волновой турбулентностью [36-38]. [c.436] Вернуться к основной статье