Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Однако это — автогенератор такой нелинейный осциллятор демонстрирует незатухающие колебания, параметры которых (интенсивность, частота, а в более общем случае спектр и т. д.) не зависят от конечного изменения начальных условий и слабо зависят от изменения внешней силы. В частности, в фазовом пространстве хх неавтономной системы, описываемой уравнением (14.10), имеются устойчивые периодические движения, которым, если смотреть стробоскопически через период внешней силы, соответствуют (в отображении Пуанкаре) устойчивые неподвижные точки.

ПОИСК



Релаксационные автоколебания. Быстрые и медленные движения

из "Введение в теорию колебаний и волн "

Однако это — автогенератор такой нелинейный осциллятор демонстрирует незатухающие колебания, параметры которых (интенсивность, частота, а в более общем случае спектр и т. д.) не зависят от конечного изменения начальных условий и слабо зависят от изменения внешней силы. В частности, в фазовом пространстве хх неавтономной системы, описываемой уравнением (14.10), имеются устойчивые периодические движения, которым, если смотреть стробоскопически через период внешней силы, соответствуют (в отображении Пуанкаре) устойчивые неподвижные точки. [c.305]
Интенсивные исследования нелинейных диссипативных систем с трехмерным фазовым пространством позволили в последние годы обнаружить совершенно новый класс автоколебательных систем. Это автогенераторы шума — диссипативные системы, совершающие незатухающие хаотические колебания, колебания со сплошным спектром за счет энергии нешумовых источников. Замечательно, что даже столь привычный нам осциллятор (14.10) в широкой области параметров является автогенератором шума. Открытие стохастических автоколебаний — это, пожалуй, наиболее яркое достижение современной теории. Почему же оно появилось только сейчас Дело в том, что со времен Пуанкаре до недавнего времени предельный цикл был единственным примером нетривиального притягивающего множества в фазовом пространстве нелинейных диссипативных систем. Правда, уже довольно давно были обнаружены сложные многопетлевые предельные циклы. Устойчивые многопериодические движения были обнаружены при исследовании синхронизации автогенераторов. [c.305]
По-видимому, обнаружение сложных предельных циклов, а затем и бифуркаций, показывающих дорогу к их дальнейшему усложнению, уже могло бы послужить причиной расширения представлений об автоколебаниях. Однако фактически это произошло несколько позже, когда появились результаты численных экспериментов, доказывающих существование непериодических разовых потоков в диссипативных неравновесных системах [6]. Практически в то же время в абстрактной теории динамических систем появились новые математические объекты — сложные аттракторы, названные Рюэлем и Такенсом странными . [c.305]
Замечательно, что сейчас, когда сформировалась новая точка зрения на стохастические автоколебания, они обнаруживаются в очень простых, по существу, классических системах, например таких, как связанные автогенераторы или релаксационный генератор с полутора степенями свободы. Их находят, потому что теперь знают, что именно искать. [c.306]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте