ПОИСК Статьи Чертежи Таблицы Классификация методов контроля из "Приборы для неразрушающего контроля материалов и изделий том 2 " Согласно ГОСТ 23829—79 акустические методы делят на две большие группы использующие излучение и прием акустических волн (активные методы) и основанные только на приеме волн (пассивные методы). В каждой из групп можно выделить методы, основанные на возникновении в объекте контроля бегущих и стоячих волн или колебаний (рис. 20). [c.201] Активные акустические методы, в которых применяют бегущие волны, делят на две подгруппы, использующие прохождение и отражение волн. Применяют как непрерывное, так и импульсное излучение. [c.201] К методам прохождения относятся следующие. [c.201] Теневой метод основан на уменьшении амплитуды прошедшей волны под влиянием дефекта (рис, 21, а). [c.201] Временной теневой метод основан на запаздывании импульса, вызванном огибанием дефекта. [c.201] Зеркально-теневой метод основан на ослаблении сигнала, отраженного от Противоположной поверхности изделия (донного сигнала). [c.201] В методах отражения применяют, как правило, импульсное излучение. К этой подгруппе относят следующие методы дефектоскопии. [c.201] Эхо-метод (рис. 21, б) регистрирует эхо-сигналы от дефектов. [c.201] Зеркальный эхо-метод основан на зеркальном отражении импульсов от дефектов, ориентированных вертикально к поверхности, с которой ведется контроль (рис. 22, а). Для этого наклонные преобразователи (Л и С) располагают по разные стороны изделия (/(-метод) или по одну сторону изделия (А и В), используя отражение от нижней поверхности. Это повышает надежность выявления непрова-ров и трещин в сварных швах. В процессе контроля с помощью механических или электрических устройств выполняется условие 1а + Id — onst. [c.201] При дельта-методе (рис. 22, б) рассеянные на дефекте волны от преобразователя А принимаются преобразователем В непосредственно над дефектом. Метод позволяет получить визуальное изображение дефектов сварных швов в плане. Для его реализации иногда необходима зачистка валика усиления шва или применение иммерсионного контакта преобразователя В с изделием. [c.201] Реверберационный метод (рис. 22, в) предназначен для контроля слоистых конструкций типа металл—пластик. Он о нов2н на анализе длительности реверберации ультразвуковых импульсов в одном из слоев. Например, когда преобразователь расположен на слое металла, ультразвуковые волны частично отражаются от границы его раздела с пластмассой, а частично проходят в пластмассу, что вызывает гашение реверберации. При некачественном соединении материалов отражение от границы их раздела будет больше, и длительность ревербераций увеличится. [c.202] Методы прохождения и отражения звука отличаются также по регистрируемому параметру по амплитуде сигнала (теневой и дельта-методы), по амплитуде и фазе волны (акустическая голография в теневом и эхо-методах, некоторые варианты велосимме-трического метода), амплитуде и времени прохождения импульса (остальные методы). [c.202] Теневой метод применяют в основном для контроля листов малой и средней толщины, изделий из материалов с большим рассеянием УЗК (покрышек колес). При особенно большом рассеянии используют временной теневой метод (контроль бетона, огнеупоров). Условием его применения является двусторонний доступ к изделию. В случае, когда это условие не выполняется, может быть использован зеркально-теневой метод (например, для контроля железнодорожных рельсов). Теневой эхо-метод и сквозной эхо-метод применяют для повышения чувствительности теневого метода к мелким дефектам. Различные варианты методов прохождения применяют для контроля физико-механических свойств бетона, чугуна, стеклопластиков, древесностружечных плит, технических тканей и т. д. [c.203] От рассмотренных акустических методов НК суш,ественно отличается импедансный метод. Он основан на анализе изменения механического импеданса участка поверхности контролируемого объекта, с которым взаимодействует преобразователь. Об изменении импеданса судят по характеристикам колебаний преобразователя частоте, амплитуде, фазе. В отечественных низкочастотных импедансных дефектоскопах преобразователь имеет форму стержня (см. рис. 21, г). В некоторых иностранных приборах (Бонд-тестер, США) преобразователь выполняют в форме пьезопластины с протектором и демпфером. Частота колебаний здесь значительно выше. [c.203] При использовании стоячих волн возбуждаются свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания в объекте чаш,е всего возбуждаются путем механического удара, а вынужденные — путем воздействия гармонической силы, частота которой изменяется. Состояние (бездефектность) объекта анализируют по собственной частоте свободных колебаний либо по резонансам вынужденных колебаний. Реже используют амплитуду соответствующих колебаний. [c.203] На использовании стоячих волн основаны следующие методы. [c.203] Локальный метод свободных колебаний. Согласно этому методу (рис. 21, д) в части контролируемого изделия, например в слоистой панели, возбуждают механические колебания с помощью ударов молоточка вибратора и анализируют спектр возбуждаемых частот. В дефектных изделиях спектр, как правило, смещается в высокочастотную сторону. К этой же группе относится способ, получивший сокращенное название Предеф [50]. Сущность его состоит в возбуждении через слой жидкости вынужденных колебаний в стенке изделия с частотой, близкой к резонансной. После окончания возбуждения стенка продолжает колебаться в свободном режиме. По частоте этих свободных колебаний с очень высокой точностью измеряют ее толщину. [c.203] При интегральном методе свободных колебаний механическим ударом возбуждаются вибрации во всем изделии или значительной его части. Этот метод используют, например, при проверке бандажей железнодорожных колес или стеклянной посуды по чистоте звона. [c.203] Локальный резонансный метод широко применялся в толщинометрии [31]. В стейке изделия с помощью преобразователя возбуждают ультразвуковые волны (рис. 21, е). Частоту колебаний модулируют и фиксируют частоты, на которых возникают резонансы, т. е. когда по толщине стенки изделия укладывается целое число полуволн ультразвука. По резонансным частотам определяют толщину стенки дефекты фиксируют по резкому изменению толщины или пропаданию резонансов (когда дефект наклонный). В настоящее время этот метод используется редко. [c.203] Интегральный резонансный метод применяют для определения модулей упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний изделий простой геометрической формы. Этот метод используют для контроля небольших изделий, абразивных кругов, турбинных лопаток [10]. Наличие дефектов или изменение свойств материалов определяют по отклонениям резонансных частот. [c.203] Вернуться к основной статье