ПОИСК Статьи Чертежи Таблицы Когерентно-оптические методы анализа дефектоскопической информации из "Приборы для неразрушающего контроля материалов и изделий том 1 " Дефектоскопическая информация во многих случаях представляет собой изображения различного типа. Например, при контроле усталостных трещин оператор сравнивает изображения эталонной и контролируемой поверхностей.. Аналогичные операции многократно выполняются при сравнении формы однотипных изделий, выявлении дефектов заданного типа на фоне структурных помех и т. д. Это вызывает утомление операторов и приводит -к ошибкам распознавания дефектов. Во всех этих случаях эффективно применение когерентно-оптических методов фильтрации основных частот изображения, позволяющих устранить ошибки операторов. Любое изображение можно представить его частотны.м спектром (спектром Фурье), представляющим собой совокупность синусоидальных решеток с различным периодом изменений яркости и различной ориентации на плоскости. Двумерное преобразование Фурье может быть -выполнено с помощью ЭВМ, однако оптические устройства выполняют эту операцию существенно проще и быстрее. Воздействуя на спектр изображения с помощью различных устройств (масок, диафрагм), можно осуществлять его обработку в реальном масштабе времени. [c.97] Контролируемый объект (фотошаб-лон и т. п.) устанавливается в иммерсионной кювете для устранения влияния оптических неоднородностей материала его подложки. Если дефектов (отклонение в топологии рисунка, царапины) нет, то в плоскости наблюдательного экрана видно только контурное изображение объекта. При наличии дефектов, обычно имеющих широкий дифракционный спектр, их спектральные компоненты проходят мимо заградительной маски и формируют из ображение на экране в виде светлых пятен. Оператор ведет отбраковку в соответствии с критериями годности. Процедура контроля однотипных изделий может быть автоматизирована. Эффективно применение телевизионных систем наблюдения, Погрешность установки объекта в кювете не должна превышать 0.01 мм. Наклоны объекта не должны превышать 0,5°. [c.97] Для контроля дефектов участков изделий, находящихся в труднодоступных местах, перспективен метод голографической эндоскопии. В отличие от традиционных способов эндоскопии с помощью волоконно-оптических элементов (ВОЭ) здесь появляется возможность получения объемных изображений внутренних полостей изделий при углах обзора, близких к предельным. Для систем голографической эндоскопии разработаны специальные ВОЭ, обеспечивающие малые потери лазерного излучения и сохранение его когерентности. Применение лазеров в эндоскопии позволило также использовать эффект квантового усиления света с помощью ВОЭ из оптически активных материалов для резкого (в 10 —10 раз) увеличения яркости изображения, улучшения его контрастности. Накачка ВОЭ производится при этом с помощью одиночных импульсных ламп, а объект освещается лазерным светом с длиной волны, соответствующей резонансной частоте световодов.. [c.99] Интроскопы предназначены для визуализации внутренней структуры объектов, непрозрачных в видимой области спектра, но прозрачных в УФ (ультрафиолетовой) или И К (инфракрасной) областях спектра. Схема ин-троскопа показана на рис. 26. Она включает источник УФ или ИК радиации, оптическую систему фокусировки излучения и его спектральную фильтрацию, а также преобразователь изображений. [c.99] Источники света по физическим принципам действия могут быть разделены на газоразрядные, тепловые, люминесцентные и лазерные. [c.99] В газоразрядных источниках (ГИ) высокого и низкого давления используется эффект свечения газов при электрическом разряде. Для них характерна высокая яркость (10 —10 кд/м ), способность работать в модулированном и непрерывном режимах, причем модуляция осуществляется по цепи питания лампы. Индикатрисса излучения ГИ близка к сферической, размеры излучаемой области 0,1—1,0 мм. Спектр излучения ГИ обычно линейчатый или смешанный (отдельные интенсивные линии на фоне непрерывного спектра). Спектр ксеноновых ламп близок к солнечному. ГИ находят применение в стробоскопических осветителях, при люминесцентном контроле и в качестве мощных источников ИК- и УФ-излучения для длин волн 0,25—2 мкм. [c.99] Тепловые источники (ТИ) — лампы накаливания — наиболее употребительны. В основе их действия лежат законы теплового излучения. Спектр ТИ близок к спектру абсолютно черного тела (АЧТ) при соответствующей температуре имеет непрерывный характер. Длина волны максимума спектральной плотности излучения определяется законом Вина к = 3000 (/С), где К — температура лампы (Т = 3000 для ламп накаливания). [c.99] Мощным источником ИК-излуче-ния в диапазоне длин волн 0,6—2,0 мкм являются глобары (стержни из окислов редкоземельных металлов). Галогенные лампы накаливания излучают в области 0,3—3,5 мкм, Индикатрисса излучения ТИ близка к сферической, их яркость составляет от 10 до 10 кд/м . Недостаток ТИ — инерционность, изменение спектра излучения при колебаниях напряжения питания, высокая температура нити накала, достоинство — широкий спектральный диапазон, который легко перестраивается, надежность, большая световая мощность (до 10в лм). [c.100] ЭЛТ применяют в основном в системах бегущего луча в устройствах анализа фотоснимков и в телевизионных ( икроскопах. Для них характерны высокое быстродействие, большая информационная емкость (до 10 элементов на растр). Недостаток ЭЛТ — невысокая яркость (10 —10 кд/м ), сложность системы электронной развертки, большая дисторсия. [c.100] Техника безопасности при работе с ОКГ включает обычные мероприятия, необходимые при работе с электрическими установками, в том числе высоковольтными. Специфичным является необходимость защиты глаз от прямого попадания излучения ОКГ. Для этого персонал должен при включении лазеров надевать очки со стеклами. поглощающими излучение соответствующих длин волн. [c.100] Оптические системы интроскопов используют для формирования и фокусировки излучения. Применяют линзовые, зеркальные и комбинированные системы. Наиболее просты зеркальные. Для них характерны широкий спектральный диапазон (0,1—1000 мкм), сравнительная простота изготовления, невысокая ст0и [0сть материалов подложек зеркал. Однако они плохо, работают при больших углах поля зрения, чувствительны к деформациям и вибрациям. [c.100] Линзовые системы сложнее и дороже, но обладают лучшими изобразительными характеристиками, особенно при значительных углах поля зрения, Спектр их вропускания определяется свойствами прийеняемых материалов. [c.100] Вернуться к основной статье