ПОИСК Статьи Чертежи Таблицы К вопросу о механизме образования космической пыли. Замечания о лабораторном исследовании конденсации из "Физика ударных волн и высокотемпературных гидродинамических явлений " В этом параграфе более подробно рассматривается процесс конденсации при расширении пара, намечаются основные пути количественного расчета и приводятся численные результаты. Посмотрим, как протекает конденсация в облаке испаренного вещества, расширяющегося в пустоту. При этом будем иметь в виду явление взрыва больших метеоритов при ударе о поверхность планет (лишенных атмосферы) или при столкновениях с астероидами, о котором упоминалось в начале 6. Нас интересует вопрос о том, в каком виде разлетается в межпланетное пространство испаренное вещество грунта планеты и тела метеорита в виде чистого газа или же в виде мельчайших частиц и каковы размеры последних. Решение этой задачи было получено в работе одного из авторов [19] ). [c.458] Здесь Гр — температура пара, насыщенного при данной плотности, Т — фактическая температура пара. [c.459] Теорию можно обобщить и на случай электрически заряженных зародышей, внутри которых сидит ион (см. [19]). Скорость образования зародышей при этом по-прежнему описывается формулой (8.41), только константа Ъ уменьшается. [c.460] Составим уравнения кинетики конденсации. Сделаем основное предположение о том, что процесс расширения паров происходит настолько медленно, что процесс образования зародышей можно считать квазистационарным. Скорость образования при этом в каждый момент времени совпадает со стационарной скоростью (8.41), соответствующей фактическому переохлаждению 0, которое существует в системе в данный момент. [c.460] Интегрирование по времени здесь ведется от момента насыщения, т. е. от момента, когда начали появляться зародыши. [c.460] Уравнения (8.42), (8.43), (8.41) вместе с уравнением адиабаты двухфазной системы (8.39), формулой насыщенного пара (8.38) и законом расширения вещества, который в случае разлета в пустоту дается выражением (8.25), образуют полную систему уравнений для расчета кинетики конденсации. [c.461] Второй этап — это рассмотрение роста уже известного числа капель в течение всей последующей стадии, вплоть до оо. [c.461] Строгое решение системы уравнений представляет, конечно, большие трудности. В работе [19] находится приближенное решение. Приближенное рассмотрение первого этапа основано на чрезвычайно резкой зависимости I (0), в силу которой можно полагать, что практически все зародыши образуются в течение очень короткого времени вблизи момента, когда переохлаждение максимально (решение действительно приводит к экстремальному виду зависимости 0 ( )). [c.461] Отсылая за подробностями решения к работе [19], приведем результаты расчета для конкретного примера. [c.461] Рассмотрим шар из атомов железа с массой 33 ООО т, который нагрелся и превратился в плотный газ, скажем, при ударе огромного железного метеорита о поверхность Луны. Пусть скорость удара была такой, что начальное нагревание железа при нормальной плотности составляло 8о = 72 эв атом. Начальная температура при этом была Тд = 10 зб = = 116 ООО К. В стадии сильного охлаждения к моменту насыщения пары разлетаются практически инерционно, со средней скоростью и = = 15,5 км1сек. Пары становятся насыщенными в момент времени tl = = 6,8-10 сек от начала разлета, при расширении до радиуса 1050 м. При этом Ту = 2130 К, пу = 7,15-101в см . [c.461] При разлете первоначально высокоионизованного газа в пустоту в нем даже в стадии сильного охлаждения сохраняется остаточная ионизация, которая гораздо выше термодинамически равновесной. Центры конденсации при этом будут содержать ионы. Как показывают расчеты, чпсло центров конденсации очень слабо зависит от того, заряжены они или нет, так что предположение о том, что конденсация идет на ионах, не является существенным. [c.461] Рассмотрение второй стадии, роста капель, показывает, что в течение продолжительного времени конденсация следит за расширением вещества и в системе поддерживается состояние, близкое к насыщению. Лишь к моменту I2 2,5 сек, при разлете шара на 40 км, плотность вещества становится столь малой, что дальнейший рост капель прекращается и наступает закалка. К этому моменту, а значит, и всего, конденсируется примерно половина паров железа. Зная степень конденсации Хоэ и число частиц конденсата, можно найти и их размеры (число атомов в частичке равно X oV ). В нашем примере на бесконечность разлетаются железные-частички радиусом 3,1-10 см всего их3-10 i. Примерно половина вещества уходит на бесконечность в виде газа. [c.462] Теория позволяет установить приближенные законы подобия для перехода к другим начальным условиям. Оказывается, что при условии достаточной медленности расширения, когда справедливы исходные предположения, степень конденсации данного вещества при разлете на бесконечность не зависит от начальных условий, а размеры частиц конденсата пропорциональны начальным линейным размерам испаренного тела (корню кубическому из массы) и быстро убывают с возрастанием начального нагревания. [c.462] Надо думать, что рассмотренный в предыдущем параграфе процесс конденсации испаренного вещества при разлете в пустоту является одним из механизмов образования космической пыли в солнечной системе (это предположение было высказано в работе [19]). В межпланетном пространстве присутствуют маленькие частицы разнообразных размеров, которые называют космической пылью. Иногда эти частицы выпадают на Землю в виде метеорных дождей. При своем обращении вокруг Солнца частицы испытывают некоторое торможение под действием аберрационной составляющей светового давления ). Самые мельчайшие частицы с размерами порядка 110 —10 см при этом выпадают на Солнце и исчезают (см. об этом в [23]). Следовательно, в солнечной системе должен существовать источник восполнения запасов мельчайших частиц космической пыли. [c.462] Можно думать, что описанное выше явление конденсации испаренного вещества грунта планеты, метеорита или астероидов также является поставщиком мельчайших частиц. [c.462] При энергичных столкновениях астероидов, когда кинетическая энергия удара достаточна для полного испарения обоих сталкивающихся тел, механический эффект раздробления твердого вещества вообще отсутствует, так как вся масса полностью испаряется. В этом случае для образования мельчайших частиц механизм конденсации является единственным. [c.463] Жидкие капельки, выросшие в процессе конденсации, постепенно остывают благодаря потерям энергии на тепловое излучение и затвердевают. Можно показать, что процесс охлаждения излучением протекает гораздо скорее, чем испарение нагретых частиц, которое чрезвычайно резко замедляется по мере остывания. Таким образом, однажды родившиеся частицы конденсата будут продолжать свое существование в виде твердых пылинок. Поскольку в космосе происходят столкновения тел самых различных размеров и скоростей, рождаются частицы конденсата также самых разнообразных размеров. [c.463] Явление конденсации испаренного вещества при газодинамическом расширении можно использовать и для лабораторного изучения конденсации паров металлов или других твердых (и жидких) веществ и изучения оптических свойств мельчайших частиц. [c.463] Размеры частиц конденсата зависят от начальных условий, поэтому путем соответствующего выбора этих условий можно добиться получения в лаборатории частиц желаемых размеров. Приведем результаты грубой оценки для условий, близких к лабораторным. Если быстро испарить 1 г железа, сообщив ему тем или иным путем начальную энергию Ео = = 13 эв атом, соответствующую начальной температуре (при плотности твердого металла) Го = 35 000° К, то конденсация паров при разлете в пустоту (в откачанном сосуде) заканчивается к моменту 1 = 5-10 сек при разлете облачка на 30 см. Частицы конденсата имеют при этом размеры порядка 10 см. [c.463] Вернуться к основной статье