ПОИСК Статьи Чертежи Таблицы Анализ структурных факторов, обусловливающих упрочнение металла из "Новые пути повышения прочности металлов " Хотя воздействие перечисленных факторов на прочность является комплексным, полезно рассмотреть раздельно влияние каждого фактора. [c.11] Однако сейчас еще трудно сказать, возможно ли получение столь высокой плотности дислокаций по всему объему, так как при таком значении средней плотности дислокаций взаимодействие их силовых полей может привести к образованию нарушений сплошности металла. Приближенные расчеты [6] показывают, что субмнкроскопические трещины возникают в локальных объемах металла, где достигнуто близкое к 10 - см местное значение плотности дислокаций. В данном случае полностью нарушается кристаллическое строение решетки и говорить о плотности дислокаций как таковой уже нельзя. [c.12] По-видимому, предельная локальная плотность, при которой еще возможно повысить сопротивление деформированию, должна быть менее 10 см [7]. При такой плотности дислокаций размер сетки дислокаций, согласно сботношению (1), близок к 70 А. Получение металлов и сплавов с размером блоков такого порядка является реальным. А это означает, что прочность металла уже только в результате увеличения плотности дислокаций при условии равномерного распределения их (например, по границам блоков) может быть повыщена более чем на два порядка по сравнению с отожженным состоянием. [c.12] Границы субзерен при активном нагружении также могут являться барьерами для движения дислокаций. Но отдельные дислокации могут выбиваться из стенки, образующей субпрани-цу, другой дислокацией, движущейся в той же плоскости скольжения. Необходимо отметить, что в условиях длительных нагрузок (например, при ползучести) эффективность границ субзерен, как барьеров для распространения скольжения, резко возрастает вследствие относительно высокого сопротивления стенок дислокаций действию термических флуктуаций. Поэтому у металлов и сплавов с развитой полигональной структурой сопротивляемость ползучести повышена. [c.13] Дисперсные фазы в сплавах также препятствуют движению дислокаций. Механизм упрочнения в результате дисперсионного твердения рассмотрен в ряде работ [8—11 и др.]. Согласно представлениям Мотта 19], частицы создают внутренние напряжения в матрице, которые оказывают сопротивление движению дислокаций. Важным упрочняющим фактором при этом является степень дисперсности частиц, на чем мы еще остановимся ниже. [c.13] Раосматривая влияние размера зерна на прочность, необходимо также учитывать и состояние самих границ. Так, например, в процессе высокотемпературного наклепа обрабатываемой стали происходит локализация деформации по границам аустенитных зерен, что приводит к искажению границ и, как следствие, к изменению конфигурации зерен — возникновению развитой зубчатости [13]. [c.14] Есть основание полагать, что такое специфическое строение границ является результато.м локальных пластических смещений внутри блочной структуры наклепанного аустенитного зерна и диффузионного перемещения сегментированной границы при высокотемпературном нагреве [13]. Ряд исследователей разработал специальные способы высокотеМ Пературной МТО, позволяющие получить структуру стали с развитой зубчатостью границ и тем самым существенно повысить сопротивляемость ползучести [14, 15]. Получаемые искажения в периферийных областях зерна в значительной степени способствуют упрочнению, предотвращают образование фаз, ослабляющих связь между зернами [13, 16], и увеличивают барьерный эффект границ зерен. [c.14] В ряде работ сделана попытка найти аналитические зависимости между критериями прочности и размером дисперсных частиц [17, 18]. [c.14] Количественные расчеты эффекта упрочнения при наличии дисперсной фазы не проводились, но, согласно экспериментальным данным, предел текучести в результате выпадения дисперсной фазы существенно повышается, при этом существует критическая степень дисперсности фазы, соответствующая максимальному упрочнению. Упрочнение сплава при дисперсионном твердении достигает максимума при расстоянии между дисперсными частицами порядка 1000 А и их размере 50— 200 А [11]. Важно при этом получить равномерное распределение дисперсной фазы в матрице, что будет способствовать более однородному развитию деформационных процессов. [c.15] При ТМО сталей наблюдается весьма сложное взаимодействие процессов пластической деформации и фазового превращения. Известно, что при пластической деформации в области стабильного аустенита (выше точки Асз) зерна аустенита дробятся на более мелкие и процесс блокообразования протекает более интенсивно. Последующая закалка, при которой температура стали быстро снижается ниже температуры рекристаллизации (чем предотвращается развитие собирательной рекристаллизации), позволяет сохранить блочную структуру деформированного аустенита до начала мартенситного превращения, которое протекает в пределах блочной структуры аустенита. Чем мельче будут получаемые при высокотемпературной деформации блоки в аустените, тем более дисперсной окажется структура мартенсита. Это и понятно, так как в тонкой структуре аустенита с нарушенным строением кристаллической решетки в областях границ блоков имеется большое число центров, энергетически выгодных для образования зародышей кристаллов мартенсита, а это предопределяет развитие тонких мартенситных пластинок. Превращение аустенита в мартенсит сопровождается дальнейшим измельчением областей когерентного рассеивания внутри кристаллов мартенсита до 10 — 10- см [19]. [c.15] Эффект упрочнения при ТМО получается устойчивым благодаря наследственности наклепа и созданной дислокационной структуры. Наследствеиность дислокационной структуры при мартенситном превращении предполагает, что чем больше плотность дислокаций в исходио.м аустените, тем выше плотность дислокаций в мартенсите [20]. Однако механизм наследственности еще не вполне ясен. [c.16] Общее представление о механизме упрочнения стали в результате ТМО было бы неполны.м, если не рассмотреть еще возможность полиморфного превращения стали под напряжением. В работах Курдюмова с сотрудниками [21] было показано понижение мартенситной точки, а также превращение аустенита в мартенсит непосредственно во время деформации в надмартенситной области температур. С увеличением степени деформации указанные явления протекают все более интенсивно, причем максимальное превращение аустенита в мартенсит под действием приложенного напряжения происходит обычно при деформации свыше 50%, но при этом почти полностью исключается прев ращение при последующем охлаждении. Кристаллы так называемого мартенсита деформации мельче кристаллов мартенсита охлаждения недеформированной стали, что также способствует упрочнению. Дисперсность структуры мартенсита деформации тем выше, чем больше степень деформации аустенита в надмартенситной области температур. [c.16] Важное значение в повышении прочностных свойств при ТМО имеет также степень чжтоты шихтовых материалов [22]. Прочностные свойства сталей, выплавленных в вакууме из чистых исходных. материалов, после ТМО повышаются дополнительно благодаря увеличению запасов пластичности в аустенитном состоянии и после закалки мартенсита, что, в свою очередь, уменьшает вероятность образования микротрещин в процессе ТМО [22] и при последующей эксплуатации стали. [c.17] Вернуться к основной статье