ПОИСК Статьи Чертежи Таблицы Пуассоновы многообразия из "Динамика твёрдого тела " Большинство рассматриваемых в этой книге задач допускает запись в канонической гамильтоновой форме и обладает первым интегралом — интегралом энергии. Однако во многих случаях уравнения движения этих задач удобнее записывать не в канонической форме, а с помощью некоторой системы алгебраических переменных, наиболее приемлемой для исследований — поиска интегралов, частных решений, анализа устойчивости и пр. В этих переменных система не только сохранит многие свойства обычных гамильтоновых систем, но и приобретет некоторые характерные отличия, изучаемые в общей теории пуассоновых структур. С ней можно познакомиться по нашей книге [31]. [c.27] Здесь мы вкратце изложим основные определения и результаты, необходимые для задач динамики твердого тела. Отметим также, что само развитие теории пуассоновых структур во многом было стимулировано динамикой волчков, так как последняя позволяет сделать абстрактные формулировки многих теорем более наглядными и естественными. [c.27] кто плохо знаком с дифференциальной и симплектической геометрией (здесь можно рекомендовать книги [75, 6, 7]), при чтении этого параграфа могут все результаты представлять себе в координатной форме и игнорировать иногда слишком формальную математическую терминологию. В ее основе лежат простые динамические факты, но при первом знакомстве она может казаться несколько оторванной от них. [c.27] Вернуться к основной статье