ПОИСК Статьи Чертежи Таблицы Медленное движение систем с двумя медленными переменными из "Теория бифуркаций " Поэтому все быстрые переменные, кроме одной, можно выбрать так, что они будут равны нулю на всей медленной поверхности (см. выше п. 2.2). Поведение системы при ненулевых значениях этих переменных не сказывается на медленном поле, поэтому при исследовании медленного движения о них можно забыть. [c.175] пусть пространство Е расслоения Е Б трехмерно, база двумерна, а слои одномерны. В каждой точке этого трехмерного пространства имеется вертикальное направление (касательное слою, вдоль которого обе медленные переменные постоянны). В неособых точках возмущающего поля имеется еще его направление. Особые точки для систем общего положения не лежат на медленной поверхности. Поэтому мы их не рассматриваем, и в интересующих нас точках пространства Е заданы два поля направлений вертикальное и возмущающее. [c.175] Для систем общего положения эти поля коллинеарны лишь в точках некоторой гладкой кривой, и эта кривая трансверсально пересекает медленную поверхность в ее регулярных точках. [c.175] Эти точки пересечения — положения равновесия медленного уравнения. Поскольку они регулярны, это обычные особые точки гладкого (медленного) векторного поля на поверхности (узлы, седла, фокусы). К их исследованию применима обычная локальная теория [26]. [c.175] Нас же интересуют особые точки проектирования медленной поверхности. В этих точках наши поля направлений некол-линеарны. Следовательно, они порождают гладкое поле плоскостей. [c.175] Ч Возмущающее поле — это значение производной возмущенного поля по малому параметру е при в=0. [c.175] Гладкое поле плоскостей общего положения в окрестности точки общего положения задает контактную структуру (если поле задано как поле нулей 1-формы то 3-форма a,/ da, невырождена). [c.176] Точки вырождения контактной структуры, задаваемой полем плоскостей общего положения в трехмерном пространстве, образуют поверхность. Эта поверхность вырождения контактной структуры для системы общего положения трансверсально пересекается с медленной поверхностью по кривой. Более того, она может в отдельных точках трансверсально пересекать гладкую кривую нерегулярных точек проектирования медленной поверхности (кривую складок). Для системы общего положения точки пересечения будут именно точками складки, а не сборки. [c.176] Рассмотрим теперь следы построенного выше поля плоскостей в трехмерном пространстве на медленной поверхности. [c.176] Плоскость поля пересекает касательную плоскость медленной поверхности в регулярной точке по направлению медленного поля. Поэтому следы построенного поля плоскостей образуют в регулярной части медленной поверхности в точности поле направлений медленного движения. [c.176] Это поле направлений продолжается и на линию критических точек проектирования в виде гладкого поля направлений. Особенности оно имеет лишь в тех местах, где плоскость поля касается медленной поверхности. Это может случиться для системы общего положения лишь в отдельных точках. Такие точки лежат обязательно на кривой складок, так как плоскость поля содержит вертикальное направление. [c.176] Для систем общего положения эти отдельные точки не будут ни точками сборки, ни точками вырождения контактной структуры. [c.176] фазовые кривые медленного движения являются частями интегральных кривых поля следов построенных выше плоскостей на медленной поверхности. Это поле направлений на медленной поверхности вертикально на линии критических точек проектирования (ибо и поле плоскостей, и касательная медленной поверхности в этих точках содержат вертикаль), и может еще иметь отдельные особые точки на этой линии (не в сборках и не в точках вырождения контактной структуры). [c.176] Ниже описаны нормальные формы, к которым приводятся интегральные кривые построенного поля направлений на медленной поверхности (а следовательно, и фазовые кривые медленного уравнения) расслоенными диффеоморфизмами. [c.176] Вернуться к основной статье