Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Теорема ([66], [67]). В окрестности векторного поля, удовлетворяющего условиям теоремы пункта 6.8, но не являющегося граничным для векторных полей Морса—Смейла, на бифуркационной поверхности всюду плотны векторные поля, обладающие 1) предельным циклом типа седло-узел 2) предельным циклом типа неориентируемый узел (с мультипликатором, равным (—1)) 3) бесконечным множеством устойчивых предельных циклов.

ПОИСК



Векторные поля на бифуркационной поверхности

из "Теория бифуркаций "

Теорема ([66], [67]). В окрестности векторного поля, удовлетворяющего условиям теоремы пункта 6.8, но не являющегося граничным для векторных полей Морса—Смейла, на бифуркационной поверхности всюду плотны векторные поля, обладающие 1) предельным циклом типа седло-узел 2) предельным циклом типа неориентируемый узел (с мультипликатором, равным (—1)) 3) бесконечным множеством устойчивых предельных циклов. [c.147]
В случае, если бифуркационная поверхность является граничной для векторных полей Морса—Смейла в точке vq, то векторные поля (do различаются модулем (см. п. 6.3), но геометрически одинаковы . В неблуждающее множество добавляется лишь гомоклиническая траектория простого касания. [c.147]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте