ПОИСК Статьи Чертежи Таблицы Кинематический анализ плоских механизмов с низшими парами из "Теория механизмов и машин " Как плоские, так и пространственные структурные группы используются не только при структурном синтезе, но и при анализе механизмов. [c.45] В табл. 1 для кинематических пар были даны примеры геометрических связей, т. е. связей, уравнения которых содержат только координаты точек механической системы (и, может быть, время). Кроме геометрических связей, в механизмах могут быть дифференциальные связи, т. е. связи, уравнения которых содержат координаты точек и производные от этих координат по времени (и, может быть, время). При этом важно знать, может ли быть проинтегрирована система уравнений дифференциальной связи. Если да, то после интегрирования получаем уравнения, содержащие только координаты точек системы (иногда и время) и, следовательно, в этом случае дифференциальная связь приводится к геометрической. Если уравнения дифференциаль-ной связи не интегрируются, то связь называется неголономной. [c.46] Уравнение (1.11) интегрируется также в гех случаях, когда удается подобрать интегрирующий множитель М (Qs, t) так, чтобы после умножения на него левая часть уравнения (1.11) стала полным дифференциалом. [c.47] Дифференциалы d p, dv и вариации бф, 6v могут принимать любые значения. Поэтому билинейные коварианты обращаются в нуль только при выполнении условий sin v = О, os v = О, что невозможно. Следовательно, система уравнений связи (1.13) не интегрируется и выражает неголономную связь. [c.48] Классификация кинематических пар с неголономными связями. В тех случаях, когда неголономные связи накладывают ограничения только на вариации обобщенных координат отдельных кинематических пар, можно учесть их при определении класса соответствующей пары и находить число степеней свободы механизма непосредственно по формуле (1.3). Например, для кинематической пары колесико с острым краем — плоскость (см. рис. 15) число обобщенных координат равно четырем (х, у, Ф, v). При скольжении колесика число степеней свободы совпадает с числом обобщенных координат, т. е. рассматриваемая пара является четырехподвижной парой (парой второго класса). Возможным перемещениям в относительном движении звеньев пары соответствуют перемещения точки контакта вдоль осей X ц у, угол поворота колесика tp и изменение угла v. Две геометрические связи выражают невозможность перемещения вдоль оси 2 и условие перпендикулярности средней плоскости к плоскости фрикционных контактов. [c.49] Однако действительное число степеней свободы механизма равно 3, так как для определения положений всех звеньев механизма надо иметь 3 обобщенные координаты (углы поворота звеньев фь ф2 и расстояние р). Отсюда следует, что в механизме есть одна избыточная связь (пассивная), т. е. одно из уравнений связи является следствием других. Таким уравнением можно считать уравнение, выражающее невозможность перемещения звена / в направлении, перпендикулярном к плоскости фрикционных контактов, так как расположение осей пар tO—1 и О—2 уже обеспечивает постоянство расстояния между осью звена/и точкой контакта. [c.50] Искомая площадь приближенно равна S = p vi — vn), где I — расстояние между острием обводного штифта и точкой контакта колесика с плоскостью, vq, vi — значения угла v в начале обвода контура из некоторой точки О внутри искомой площади и в конце обвода при возвращении в ту же точку О. [c.51] При подсчете числа степеней свободы по формуле (1.16) считаем, что колесико образует с плоскостью контакта пару второго класса, а острие обводного штифта — пару первого класса. [c.51] Задачи кинематического анализа механизмов. Кинематический анализ механизмов состоит в определении движения звеньев механизма по заданному движению начальных звеньев. Основные задачи кинематического анализа 1) определение положений звеньев, включая и определение траекторий отдельных точек звеньев, 2) определение скоростей и ускорений. При решении этих задач считаются известными законы движения начальных звеньев и кинематическая схема механизма, т. е. структурная схема механизма с указанием размеров звеньев, необходимых для кинематического анализа. [c.52] Вернуться к основной статье