ПОИСК Статьи Чертежи Таблицы Теория В. И. Тихомирова из "Курс теории коррозии и защиты металлов " Тихомиров рассматривает четыре случая. [c.97] Изменение состава сплава и окалины на границе раздела сплав—окалина во времени показано на рис. 65 содержание металлов Me и Mt ъ сплаве на границе с окалиной обозначено х, а в образующейся на этой границе окалине у. При этом всегда у у X, т. е. металл Me выгорает в относительно большем количестве, чем то, которое бы отвечало окисляемому сплаву, а х и у связаны таким образом между собой, что с уменьшением х уменьшается и у, и наоборот (что вытекает из природы химических процессов независимо от причины избирательного окисления одного из компонентов — термодинамической или кинетической характеристики процесса). [c.97] На рис. 66 представлено распределение концентрации компонентов сплава, выражен1 1ое отношением, Ме Mi, в диффузионном слое. [c.97] В этом случае кривая состава образующейся окалины (см. рис. 65) никогда не достигнет координаты, отвечающей составу окисляемого сплава, т. е. величины а. Вследствие этого окисляемый образец сплава будет все время обедняться компонентом Me и процесс никогда не придет к состоянию стабилизации. Окисление и обеднение образца компонентом Me происходит до тех пор, пока в окисляемом образце сплава не останется почти один компонент Mt и состав окисляемого образца не сравняется по всей его толщине. Эта схема процесса может иметь место только в том случае, если диффузия компонента Me из глубинных слоев сплава к поверхности или диффузия кислорода в обратном направлении не имеют каких-либо других, более удобных, путей и происходят с одинаковой скоростью по всему сечению окисляемого образца (окисление монокристаллов сплавов или окисление сплавов при равенстве скоростей диффузии реагентов через кристаллы сплава и по границам зерен). [c.98] Окалина при этом будет содержать в себе неокисленную металлическую фазу, сильно обогащенную металлом Af , а граница раздела сплав—окалина будет извилистой и нечеткой. Отдельные оторванные зерна сплава по мере углубления в окалину с ростом последней будут все время изменять свой состав, обогащаясь металлом Mt, т. е. каждый отдельный кусочек сплава, заключенный в окалину, будет вести себя как самостоятельный образец и окисляться по схеме, разобранной выше. [c.99] Толщина диффузионного слоя в сплаве Ih в диффузионной области процесса, очевидно, будет определяться скоростью диффузии металлов Me и Mi в сплаве. Если принять, что в диффузионной области процесса окисления сплава скорость процесса окисления определяется скоростью диффузии реагентов через слой окалины, а скорость диффузии компонентов сплава через диффузионный слой сплава является подчиненным фактором, то большей относительной скорости диффузии компонента Me в сравнении со скоростью диффузии компонента Mi в сплаве должна отвечать и большая толщина диффузионного слоя /. И, наоборот, меньшей относительной скорости компонента Me должна отвечать и меньшая толщина диффузионного слоя. [c.99] В случае бинарных сплавов коэффициент роста отдельных слоев определяется разностью граничных концентраций ( q — с6) и коэффициента диффузии йд не двух, а трех компонентов — двух компонентов сплава и кислорода. Зто выражается в том, что коэффициент роста того или иного слоя является суммой не двух, а трех слагаемых. [c.100] Уравнения (167) и (168) могут служить для сравнения процессов окалипо-образования, протекающих на различных металлах и сплавах, и для выявления роли различных легирующих добавок, если и в том и в другом случае образуется трехслойная окалина. Если имеется ряд сплавов, на которых образуется окалина качественно одинакового состава и строения, но сходные слои окалины отличаются друг от друга главным образом величинами эффективных коэффициентов диффузии и разностей граничных концентраций отдельных компонентов, то уравнения (167) и (168) для этих сплавов будут отличаться друг от друга только величинами коэффициентов роста слоев окалины, значения же величин т1, rjj и L будут различаться значительно меньше. [c.100] Анализ имеющихся в литературе опытных данных о скорости окалинооб-разования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование. [c.102] Вернуться к основной статье