ПОИСК Статьи Чертежи Таблицы Теплопроводность Температурное поле, градиент температуры и тепловой поток из "Теплотехника " Тепло самопроизвольно распространяется от тел с большей температурой к телам с меньшей температурой. При наличии разности температур в одном теле или во многих телах (твердых, жидких и газообразных) возникает процесс теплообмена или теплопередачи, который протекает тем интенсивнее, чем больше разность температур. Теплообмен является сложным процессом. Однако ради простоты изучения различают три элементарных вида теплообмена теплопроводность (кондукцию), конвекцию и тепловое излучение. [c.134] Теплопроводность опре деляется тепловым движением микрочастиц тела, т. е. движением микроструктурных частиц вещества (молекул, атомов, ионов, электронов). Обмен энергией между движущимися частицами происходит в результате непосредственных столкновений их при этом молекулы более нагретой части тела, обладающие большей энергией, сообщают долю ее соседним частицам, энергия которых меньше. В газах перенос энергии происходит путем диффузии молекул и атомов, в жидкостях и твердых диэлектриках — путем упругих волн. В металлах перенос энергии осуществляется колеблющимися ионами решетки и диффузией свободных электронов ( электронным газом ) значение упругих колебаний кристаллической рещетки в этом случае не имеет большого значения. [c.134] Однако в теории теплопроводности не -рассматривается движение микроструктурных частиц, поскольку она базируется на анализе макро-процессов. [c.134] Под конвекцией тепла понимают процесс передачи его из одной части пространства в другую перемещающимися макроскопическими объемами жидкости или газа. В зависимости от причины, вызывающей движение, конвекция может быть свободной (естественной) или вынужденной, происходящей за счет действия внешних сил. Естественное или свободное движение жидкости или газа, а следовательно, и конвекция тепла вызываются разностью удельных весов неравномерно нагретой среды принудительное движение осуществляется нагнетателями (насосами, вентиляторами, компрессорами и др.). [c.135] Л/ —средняя разнобть температур между греющей средой и нагреваемой поверхностью (температурный напор), град. [c.135] Величину, обратную коэффициенту теплоотдачи 1/а, называют термическим сопротивлением. Коэффициент конвективной теплоотдачи зависит от многих факторов и на практике значение его составляет от 2 (от свободно движущегося воздуха к плоскости) до 5000 вт1(м -град) и более (от вынужденно движущейся воды в трубах к их поверхности). Оно зависит от скорости потока и характера движения, от формы и размера обтекаемого тела, от свойств и состояния среды. [c.135] Тепловое излучение представляет собой процесс превращения тепла в лучистую энергию и передачи ее в окружающее пространство.. [c.135] Природа тепловых и4 ветовых (видимых) лучей одна и та же. Электромагнитное поле является формой материи и здесь уместно привести слова акад. С. И. Вавилова Солнечные лучи несут с собой солнечную массу. Свет — не бестелесный посланник Солнца, а само Солнце, часть его, долетевшая до нас в совершенной, раскрытой в энергетическом смысле форме, в форме света . Выдающемуся русскому физику проф. П. Н. Лебедеву в 1900 г. удалось измерить давление, производимое светом, и таким образом показать материальную сущность света. [c.136] Тепловое излучение различных тел определяется их тепловым состоянием, а также природными свойствами. Температура резко влияет на лучеиспускательную способность тел, т. е. на количество энергии, излучаемой единицей поверхности тела за единицу времени. Тело, обладающее при данной температуре наибольшей излучательной способностью, называется абсолютно черным телом. Таких тел в природе не существует и все реальные тела излучают при одной и той же гемпературе только часть энергии абсолютно черного тела. [c.136] Лучистая энергия, излучаемая нагретым телом в пространство, падает на другие тела и в общем случае частично поглощается ими, частично отражается и частью проходит сквозь тело. Отраженная телом и прошедшая сквозь него часть лучистой энергии рассеивается в окружающем пространстве. Таким образом, лучистый теплообмен, или передача тепла лучеиспусканием от одних тел к другим, связан с двойным преобразованием энергии теплоты — в лучистую энергию и обратно — лучистой энергии в теплоту. Лучеиспускают не только горячие твердые тела, но и трехатомные и многоатомные газы (углекислота, водяной пар и др.). В теплотехнике широко используются продукты сгорания или дымовые газы, образующиеся при сжигании топлива. Тепло от этих газов передается поверхности нагрева не только конвекцией, но и лучеиспусканием. В теплоэнергетических установках протекает сложный теплообмен всеми видами распространения тепла. В жидкостях конвекция сопровождает теплопроводность и совместный теплообмен называют конвективно-кондуктивным, в газах совместно протекает конвективнорадиационный теплообмен. Теплообмен излучением без конвекции в технических установках может протекать при глубоком вакууме ( 0,14 н м ). [c.136] Картина распределения температур в пространстве, занятом телом, характеризуется температурным полем, представляющим собой совокупность значений температур t в данный момент времени т для всех точек этого пространства. [c.136] Температурный градиент является вектором, направленным по нормали к изотермической поверхности, причем за положительное направление вектора принимается направление в сторону возрастания температур, т. е. dtldn 0. Если же вектор направлен в сторону убывающей температуры, то производная dt/dn будет отрицательной. Температурный градиент показывает, насколько интенсивно (резко) меняется температура в толще тела и является важной величиной, определяющей многие физические явления (появление трещин в хрупком теле от неравномерного нагрева, термические деформации и т. д.). Количество тепла Q, проходящее в единицу времени через изотермическую поверхность F, называют тепловым потоком. Тепловой поток q на 1 поверхности называют удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности нагрева. [c.137] Величины Q VL q являются векторами, направленными по нормали к изотермической поверхности, причем за положительное направление принимается направление в сторону уменьшения температуры. Векторы теплового потока и градиента температур противоположны. [c.137] Формулировка основного закона теплопроводности принадлежит французскому ученому Фурьё. Этот закон, сформулированный в виде гипотезы, был подтвержден многочисленными опытами. [c.138] Знак минус в уравнении (11-4) поставлен потому, что тепло распространяется в сторону падения температуры и, следовательно, приращение температуры в этом направлении имеет отрицательное значение. [c.138] В табл. 11-1 приведены некоторые данные о значениях коэффициента теплопроводности для разных веществ. Из нее видно, что наихудшими проводникам тепла являются газы, для которых Я = 0,006 -f-- 0,6 вт1 м-град). Некоторые чистые металлы, наоборот, отличаются высокими значениями X и для них величина его колеблется от 12 до 420 втЦм -град). Примеси к металлам вызывают значительное уменьшение коэффициента теплопроводности. Так, у чугуна X тем меньше, чем больше содержится в чугуне углерода. Для строительных материалов Я = 0,164-1,4 вт/ (м-град). Пористые материалы, плохо проводящие тепло, называют теплоизоляционными и для, них значения X находятся в пределах от 0,02 до 0,23 вт1 м-град). К этим материалам относят шлаковату, минеральную шерсть, диатомит, ньювель, совелит, асбест и др. Чем более порист материал, т. е- чем больше содержится в нем пузырьков малотеплопроводного воздуха, чем меньше его плотность, тем менее он теплопроводен. Очень широкое применение получил теплоизоляционный материал диатомит в 1 см которого содержится до 2-10 скорлупок, заполненных внутри воздухом. [c.139] В табл. 11-1 приведены также данные о плотности некоторых тел. [c.139] Вернуться к основной статье