ПОИСК Статьи Чертежи Таблицы Прямые циклы, используемые в химической технологии из "Теплотехника " Второй закон термодинамики является основой теории теплоэнергетических установок, холодильных установок, теплового насоса и термотрансформаторов. Он используется также для расчета термодинамических параметров реальных газов, паров и жидкостей. Всестороннее рассмотрение второго закона термодинамики в этом аспекте выходит за рамки настоящего учебника, поэтому в настоящей главе рассматриваются только те вопросы, связанные со вторым законом термодинамики, которые используются в последующих общеннженерных и специальных дисциплинах химико-технологических вузов. [c.89] Цикл газотурбинной установки. На рис. 1.61 дана принципиальная схема газотурбинной установки (ГТУ). В камеру сгорания 2 поступает сжатый воздух из компрессора I и жидкое топливо из топливного насоса 4. Полученные в камере сгорания продукты сгорания поступают в сопловой аппарат а газовой турбины 3, в котором осуществляется процесс превращения потенциальной (внутренней) энергии продуктов сгорания в кинетическую энергию потока, поступающего на лопатки в диска б турбины. Каждая соседняя пара лопаток образует криволинейный канал, в результате движения по которому энергия газового потока расходуется на вращение диска турбины. Сжигание топлива в камере сгорания может происходить как изобарно, так и изохорно однако в промышленности получили распространение главным образом газовые турбины с изобарным подводом теплоты. [c.90] В химической промышленности ГТУ используется в основном для утилизации теплоты экзотермических реакций либо энергии избыточного давления (см. 7.5). На рис. 1.64 представлена принципиальная схема использования ГТУ в производстве азотной кислоты, в процессе окисления аммиака в окислы азота (нитрозные газы). В реакторе а происходит окисление аммиака (линия 1) кислородом воздуха под давлением около 1,0 МПа, при этом выделяется большое количество теплоты. Образующиеся нитрозные газы (линия 2) с высокой внутренней энергией поступают в газовую турбину б, где они расширяются до атмосферного давления, после чего поступают в отделение абсорбции. Работа газовой турбины используется для частичного привода турбокомпрессора в, который сжимает атмосферный воздух (линия 3) до 1,0 МПа и подает его в реактор а. Газовая турбина покрывает 30% потребности в электроэнергии, необходимой для привода трубокомпрес-сора. [c.92] Циклы паросиловых установок. Цикл Ренкина. Принципиальная схема современной паросиловой установки изображена на рис. 1.65. В топке парогенератора 1 сжигается топливо. Внутренняя энергия полученных продуктов сгорания передается через стенки теплопередающей поверхности парогенератора циркулирующей в нем воде, в результате чего она нагревается и превращается в насыщенный пар давления pi. Далее этот пар поступает в пароперегреватель 2, где он за счет внутренней энергии продуктов сгорания перегревается при постоянном давлении до заданной температуры перегрева fi. После этого пар поступает в паровую турбину 3, в которой в результате адиабатного расширения от давления pi до рг производится работа последняя трансформируется в сидящем на одном Biuiy с турбиной электрогенераторе 4 в электрическую энергию. Отработавший пар с параметрами Р2 И (2 поступает в конденсатор 5, где охлаждающая вода конденсирует его в жидкость той же температуры ti. Далее, с помощью насоса 6 конденсат из конденсатора поступает снова в парогенератор, завершая цикл. [c.92] Эта формула используется нами в дальнейшем анализе паросиловых циклов. [c.93] В формулах (1.272) и (1.273) разность hi - Нг обозначена Ah и называется теплопадением в турбине. [c.93] Как видно из рис. 1.70, понижение конечного давления р2 (при неизменных pi и Ti) повышает термический к. п. д. цикла Ренкина, поскольку в области влажных паров это сопровождается понижением температуры Т2, а следовательно, расширяется температурный интервал цикла. Из этого же рисунка видно, что понижение р2 увеличивает степень заполнения площади цикла Карно площадью цикла Ренкина, вследствие чего относительный термический к. п. д. цикла Ренкина увеличивается. Однако с понижением рг расширение пара в турбине спускается в область влажных паров, следовательно, необратимость этого процесса возрастает, и поэтому внутренний относительный к. п. д. цикла Ренкина уменьшается. Из этого анализа следует, что одновременное повышение начальных параметров пара и понижение его конечного давления повышает степень термодинамического совершенства цикла Ренкина. Обычно давление пара в конденсаторе pi = 0,003...0,005 МПа. [c.95] Цикл паросиловой установки с промежуточным перегревом пара. На рис. 1.71 приведена принципиальная схема паросиловой установки с промежуточным перегревом пара, а на рис. 1.72, а, б изображен цикл, по которому она работает. Как видно из этих рисунков, здесь вместо расширения пара в турбине до недопустимой малой степени сухости хг 0,8), осуществляющегося в цикле без промежуточного перегрева пара, достигается допустимая степень сухости Хг 0,8 при том же конечном давлении р . В первой секции турбины происходит расширение пара до некоторого промежуточного давления р , после чего он поступает во второй пароперегреватель 2, где за счет теплоты дымовых газов, выходящих из первого пароперегревателя I, он снова перегревается при постоянном давлении Ре до температуры После этого пар поступает во вторую секцию турбины, где он расширяется до заданного конечного р давления в области допустимой влажности паров. [c.95] Обычно при применении одного повторного перегрева к. п. д. цикла увеличивается на 2...3,5%. При увеличении числа повторных перегревов к. п. д. цикла возрастает, но не вьш1е чем на 8...9%. [c.95] В действительности коэффициент общего использования теплоты на ТЭЦ составляет 65...70%. [c.97] Парогазовый цикл. Парогазовый цикл является бинарным циклом, где в качестве рабочих тел для превращения теплоты в работу кроме воды используются продукты сгорания топлива. [c.98] Принципиальная схема парогазовой установки, работающей по этому циклу, изображена на рис. 1.75. Воздух, сжатый в турбокомпрессоре 1, подается в горелку или форсунку 2 туда же подается газообразное либо жидкое топливо. Горелка или форсунка устанавливается в высоконапорном парогенераторе 3. В нем получается перегретый пар с давлением pi и температурой 7], который поступает в паровую турбину 7. Отработанный пар конденсируется в конденсаторе S и конденсат с помощью циркуляционного насоса 9 прокачивается через водоподогрева-тель 5 в парогенератор 3. [c.98] Парогазовые установки являются весьма перспективными установками в энергетике и в энерготехнологии химической промышленности. [c.100] Вернуться к основной статье