ПОИСК Статьи Чертежи Таблицы Расчет динамических расписаний из "Информационная поддержка наукоемких изделий. CALS-технологии " Различают расписания статические и динамические. Статическое расписание составляют в окончательном виде до начала его реализации, т.е. заранее должны быть известны совокупности предстоящих работ и средства (ресурсы) для их вьшолнения. Задачи синтеза статических расписаний имеют ряд разновидностей. Большинство из них относится к //Р-трудным задачам дискретного математического программирования, что при размерах задач, имеющих место на практике, исключает возможность применения точных методов оптимизации. Поэтому существующие методы синтеза расписаний являются приближенными, причем они ориентированы на статические расписания. [c.241] Однако статические расписания оказываются далекими от оптимальных, если в процессе их исполнения возникают отклонения от использованных при расчете исходных данных. Поэтому целесообразно применять расписания, способные адаптироваться к изменяющимся условиям. Такие расписания будем называть динамическими или адаптируемыми. Синтез динамических расписаний, или, точнее, адаптация расписаний к изменяющимся условиям, представляет собой слабо исследованную проблему. [c.242] Рассмотрим возможный подход к решению задачи синтеза динамических расписаний [64]. Эта задача решается, если возникают заметные отклонения реальных значений параметров процесса от значений, априорно принятых при расчете исходного расписания, т.е. расписания, рассчитанного до начала реализации процесса. [c.242] Во-первых, отклонения могут быть обусловлены неточностью исходных данных вследствие естественного разброса параметров процесса (производительностей серверов). Такие отклонения обычно представляются действительными переменными /), их можно выразить в процентах относительно исходных номинал .ных значений. Во-вторых, отклонения могут вызываться непредвиденными событиями, влияющими на протекание процесса. Типичными примерами таких событий служат внезапные изменения производительности серверов (например, их отказ) или числа требующих обслуживания работ. В таких случаях событием является скачкообразное изменение параметров задачи, фиксируемое в момент их изменения т. Если переменные /) выявляются в момент времени г, то начало их учета также будем относить к событиям, т.е. событие - это суммарное (накопленное) изменение параметров, фиксируемое в некоторый момент т. [c.242] В соответствии с этими двумя типами событий целесообразно при исследовании использовать два типа тестовых задач. В задачах первого типа имитируется резкое снижение производительности одного из серверов в момент времени х. В задачах второго типа 01 имитируются случайные отклонения времен обслуживания всех работ на всех серверах в пределах заданного относительного допуска Д. [c.242] Следовательно, в каждом конкретном случае можно говорить об оптимальном выборе параметра В. К сожалению, практический расчет оптимального В в реальных процессах затруднен ввиду неопределенности ряда влияющих факторов, таких, как характер и величина дестабилизирующего изменения параметров, разброс результатов рещения задач генетическим методом, неизвестность значения Поэтому целесообразно говорить лишь о рекомендациях по выбору В. Они основаны на знании характера зависимостей погрешностей 5 от и от В. [c.244] Данные табл. 2.9 получены в задаче N25. В таблице представлена зависимость погрешности 5 от длины В латентного участка, выраженной в процентах по отношению к общей длине рассчитываемой хромосомы. Эта погрешность определялась по формуле (2.7), в которой в качестве принималось значение, полученное при В = О после 2400 оценок целевой функции. [c.245] В табл. 2.10 представлены аналогичные результаты, полученные в задаче N105 при имитации резкого снижения производительности одного из серверов. Погрешности 6, оценивались после 2000 обратдений к пяг.чету целевой функции. [c.245] Таким образом, можно сделать следующие выводы. [c.245] Вернуться к основной статье