ПОИСК Статьи Чертежи Таблицы Характеристика коррозионной агрессивности буровых растворов из "Защита нефтепромыслового оборудования от коррозии " В случае применения ЛБТ из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их со стальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии. При нагружении таких соединений переменными нагрузками возникают процессы фреттинг-корро-зии. При проведении спуско-подъемных работ наблюдается периодическое смачивание при чередовании атмосферной коррозии и коррозпи погружением в электролит, что стимулирует увеличение скорости коррозионного разрушения. [c.107] Степень разрушения бурового оборудования определяется типом бурового раствора, его фазовым и химическим составом и примесями, попадающими в него в процессе эксплуатации и обработки. [c.107] В отечественной и зарубежной литературе приводится множество классификаций буровых растворов. Определяющие признаки по принятой классификации состав дисперсной среды и дисперсной фазы, химический состав, определяющий степень минерализации бурового раствора, величина pH, химическая обработка и способ приготовления. Наиболее агрессивные составляющие буровых растворов — это вода с растворенными в ней газами (кислородом, углекислым газом, сероводородом), а также минеральными солями, кислотами. [c.107] Коррозионная активность буровых растворов на водной основе определяется pH раствора и его жесткостью. В зависимости от химического состава компонентов, входящих в буровые растворы, их pH меняется в широких пределах слабощелочные 7,0 рН 8,5 среднещелочные (рН = 8,5—1 ,5), сильнощелочные (рН=11,5). [c.107] По отношению к стали щелочные растворы менее агрессивны, чем нейтральные и кислые. Однако для сильнощелочных растворов при значениях pH выше необходимого для полной пассивации может проявляться питтингообразование, хотя общая коррозия снижается. [c.107] Для алюминиевых бурильных труб с увеличением pH от 1 до 13 меняется характер коррозионного поражения слоевая коррозия — в сильнокислой области, точечная — при рН=3—11, равномерная — в сильнощелочной среде. Алюминиевые бурильные трубы целесообразно применять при использовании буровых растворов с pH от 4 до 10,5, так как сдвиг потенциала в отрицательную область приводит к увеличению тока контактной коррозии. Существенное влияние pH раствора оказывает на коррозионно-усталостную выносливость как алюминиевых сплавов, так и стали. [c.107] Среднеминерализованные глинистые растворы, содержащие до 10% Na l, обработанные химическими реагентами, используют при разбуривании глин, известняков, ангидридов. Высокоминерализованные глинистые растворы применяют при бурении слоев, сложенных галитом, а также глин, известняков, доломитов. В процессе эксплуатации изменяются свойства, состав и коррозионная активность буровых растворов. [c.108] Присутствие активирующих солей ускоряет коррозию стали за счет увеличения проводимости и затруднения образования защитных пленок. Степень агрессивности буровых растворов в присутствии активирующих ионов (С1 , Вг , J-) зависит от их концентрации. В слабощелочном растворе 1 н. Na l наблюдается увеличение в 10—15 раз скорости коррозии алюминиевых сплавов, чем в таком же растворе без ионов хлора. При этом возрастают склонность сплавов к точечной коррозии, развитие усталостных трещин, межкристаллитной коррозии. По отношению к стали как в статических условиях, так и в условиях циклического нагружения наибольшей активностью обладают буровые растворы, содержащие 3% Na l. [c.108] Дальнейшее насыщение бурового раствора от 3% до предела насыщения приводит к существенному снижению скорости коррозии, что связывают с пониже-ние.м растворимости кислорода, особенно в интервале концентраций Na l от О до 10%. То же происходит при повышенных давлениях с концентрацией до 20%. Данные по концентрации растворенного кислорода в зависимости от избыточного давления воздуха и солесодержания от О до предела растворимости (26,4% при Т = 20 °С) приведены на рис. 50. [c.108] С увеличением давления скорость коррозии стали возрастает особенно интенсивно при давлении от 2 до 3 МПа (рис. 51). При концентрации хлористых солей более 20% и до предела растворимости при повышенных давлениях наблюдается рост скорости коррозии. При повышенных давлениях кислород выступает активным деполяризатором, увеличивая скорость коррозии. Присутствие катионов, обладающих высокими деполяризующими свойствами (например, Са), значительно л-величивает скорость коррозии. Этим объясняется низкая коррозионная стойкость сталей в аэрированных высокоминерализованных буровых растворах, содержащих соль СаСЬ, добавляемую для регулирования реологических свойств промывочной жидкости, В связи с этим не рекомендуется увеличивать минерализацию буровых растворов выше 20%, особенно при наличии добавок СаСЬ. [c.108] Для вскрытия продз ктивных пластов любой проницаемости с низким пластовым давлением, проводки скважины в осложненных геологических условиях, бурения скважин при высоких температурах применяют буровые растворы на нефтяной основе (РНО), гидронефтяные эмульсии и инвертные эмульсии (известково-битумные). Эти растворы оказывают смазывающее действие, увеличивают срок службы бурового оборудования. Условный предел коррозионно-усталостной прочности при базе испытания 10 млн. циклов для стали группы прочности Д составил на воздухе 260 МПа, в буровом растворе на водной основе 90 МПа, в эмульсии дизельного топлива с минерализованной водой в соотношении 1 1 160 МПа. Введенные поверхностно-активные вещества (2% окисленного парафина) увеличили предел коррозионно-усталостной прочности образцов стали марки Д до 240 МПа. [c.109] С увеличением концентрации кислорода наблюдается снижение усталостной выносливости (рис. 52). [c.110] Влияние температуры на усталостно-коррозионное разрушение материалов прежде всего связано с процессом подвода деполяризатора, природой и свойствами пленок, образующихся на поверхности металла, их способностью раскрывать и залечивать коррозионные поражения. Результаты коррозионно-усталостных испытаний при повышенных температурах, проведенных применительно к бурильным трубам в аэрированном буровом растворе, приведены на рис. 53. С ростом температуры до 60 °С увеличивается растворимость кислорода в буровом растворе, условный предел коррозионной усталости на базе 10 млн. циклов снижается, а при температуре 90 °С в связи с уменьшением растворимости кислорода скорость коррозии снижается. Условный предел коррозионной усталости при 90 °С растет более чем в 1,5 раза по сравнению с испытаниями при 60 °С. [c.110] Вернуться к основной статье