ПОИСК Статьи Чертежи Таблицы Релея Роль аподизации из "Оптика когерентного излучения " Предположим, что рассматриваемая оптическая система состоит не из одной линзы, а из нескольких линз, среди которых могут быть как положительные, так и отрицательные. Линзы могут и не быть тонкими . Будем предполагать, однако, что система в конечном счете дает действительное изображение, но фактически это не ограничение, так как если система дает мнимое изображение, то оно может быть преобразовано в итоге в действительное, например глазом. Значит, в подобном случае нам следует включить глаз в качестве конечного элемента в нашу систему. [c.153] При рассмотрении свойств системы линз будем считать, что все элементы, создаюш ие изображение, помещены в один черный ящик и что основные свойства системы можно полностью описать, определяя только конечные свойства этого устройства. [c.153] Оптическая система называется дифракционно ограниченной, если она преобразует расходящуюся сферическую волну, исходящую из любого точечного источника, в новую идеальную сферическую волну, которая сходится в точке, лежащей в плоскости изображения. Таким образом, конечное свойство дифракционно ограниченной системы линз заключается в том, что она преобразует расходящуюся сферическую волну, падающую на входной зрачок, в сходящуюся сферическую волну, выходящую через выходной зрачок. Для любой реальной оптической системы это свойство выполняется в лучшем случае только для конечной области в плоскости предмета. Если рассматриваемый предмет не выходит за пределы этой области, систему можно отнести к дифракционно ограниченной. Если в действительности фронт волны от точечного источника после выходного зрачка значительно отличается от идеальной сферической формы, то говорят, что оптическая система имеет аберрации. [c.154] Г еометрическая оптика с достаточной точностью описывает прохождение света от входного зрачка к выходному, поэтому дифракционные эффекты играют заметную роль только на пути света от предмета к входному зрачку и от выходного зрачка к изображению. Действительно, все ограничения, налагаемые дифракцией, можно связать с любым из этих двух участков пути распространения света. Утверждения о том, что разрешение изображения ограничивается входным зрачком конечных размеров или выходным зрачком конечных размеров, полностью эквивалентны. Основная причина эквивалентности заключается в том, что один зрачок представляет собой просто изображение другого. [c.154] Представление о том, что обсуждаемые дифракционные эффекты обусловлены входным зрачком конечных размеров, было впервые введено Эрнстом Аббе в 1873г. Согласно теории Аббе, только определенная часть дифракционных максимумов, созданных сложным предметом, пропускается входным зрачком конечных размеров. Не пропускаются зрачком те максимумы, которые соответствуют высокочастотным составляющим предмета. Это положение иллюстрирует рис. 3.3.1, где предметом служит простая решетка, а оптическая система состоит из одной положительной линзы. [c.154] Это крайне важное соотношение, так как оно дает информацию относительно поведения дифракционно ограниченных когерентных систем в частотной области. Так как функция зрачка Р всегда равна или единице или нулю, то же самое справедливо и для передаточной функции. Это, естественно, означает, что в частотной области дифракционно ограниченная система имеет конечную полосу пропускания, внутри которой все частотные составляющие пропускаются без искажения амплитуды и фазы. На границе этой полосы пропускания частотный отклик сразу падает до нуля, в силу чего частотные составляющие вне полосы пропускания полностью подавляются. [c.155] Поскольку функция зрачка системы играет принципиальную роль в формировании структуры изображения, возникает вопрос о возможности подбора такого амплитудного пропускания зрачка системы, при котором ослабляются боковые лепестки дифракционной картины резко очерченной диафрагмы. Появление боковых лепестков в дифракционной картине аналогично эффекту оптических выбросов или эффекту Гиббса. Как известно, эффект Гиббса полностью исчезает, если от зрачка, амплитудное пропускание которого описывается прямоугольным импульсом, перейти к зрачку, описываемому треугольным импульсом. Наиболее подходящей формой зрачка является такая, амплитудное пропускание которой описывается функцией Гаусса. Действительно, в этом случае картина дифракции далекого поля описывается фурье- образом зрачка, а фурье-образ функции Гаусса равен функции Гаусса. Боковые лепестки при этом полностью исчезают. Процесс аподизации сопровождается неизбежным уширением основного пика дифракционной картины. [c.156] Метод аподизации, основанный на сглаживании функции пропускания зрачка системы, является весьма эффективным способом улучшения пространственной структуры оптического сигнала. На рис. 3.3.2 приведены результаты аподизации картины дифракции далекого поля. С помощью аподизации удается разделить изображение двух близко расположенных предметов, когда они очень сильно отличаются между собой по интенсивности. [c.157] Вернуться к основной статье